شناسایی مناطق مورفوژنز و رژیم‌های هوازدگی سنگ‌ها براساس مدل پلتیر (مطالعۀ موردی: حوزۀ آبخیز تجن)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آبخیزداری، دانشگده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 استادیار گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 دانشیار گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.

4 دانش‌آموخته دکتری علوم و مهندسی آبخیزداری، گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

‎10.22052/deej.2025.255743.1083

چکیده

منطقۀ مورفوژنز به پهنه‌ای اطلاق می‌شود که لندفرم‌های آن تحت‌تأثیر فرایندهای شکل‌زایی مشابه، به‌ویژه فرایندهای اقلیمی، شکل گرفته‌اند. این پژوهش با هدف پهنه‌بندی هوازدگی سنگ‌ها براساس مدل پلتیر در حوزۀ آبخیز تجن انجام شد. برای این منظور، داده‌های دما و بارش سالانه از چهار ایستگاه سینوپتیک با دورۀ آماری مناسب (۱۳۶۲-1402) اخذ و پس از رفع نواقص آماری (شامل حذف داده‌های پرت و تخمین داده‌های گم‌شده به روش رگرسیون)، تحلیل و بررسی شدند. پایگاه داده‌ای شامل نقشه‌های طبقات ارتفاعی، شیب، و فرسایش رودخانه‌ای در محیط ArcGIS تهیه شد. با تحلیل الگوهای دما و بارش، رژیم‌های هوازدگی هر ایستگاه با مدل پلتیر تعیین شده و پس از وزن‌دهی، نقشه‌های توزیع مکانی آن‌ها با روش IDW تهیه گردید. نتایج نشان داد که منطقه از لحاظ مورفوژنز به سه طبقۀ نیمه‌خشک، معتدل و ساوان تقسیم می‌شود که این الگو به‌صورت فضایی از غرب به جنوب ‌شرق تغییر می‌کند؛ نواحی شمالی در محدودۀ اقلیم معتدل و نواحی جنوبی در محدودۀ نیمه‌خشک قرار دارند. طبقۀ معتدل با 04/۱۵۹۹ کیلومتر مربع بیشترین و طبقۀ ساوان با 03/۱۲۶۹ کیلومتر مربع کمترین وسعت را داراست. همچنین از منظر هوازدگی، بیشترین مساحت منطقه به نواحی با هوازدگی مکانیکی کم (98/۲۶۳۰ کیلومتر مربع) اختصاص دارد، درحالی‌که نواحی با شدت هوازدگیِ بسیار ضعیف (19/۵۹۵ کیلومتر مربع) کمترین سهم را به خود اختصاص می‌دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of Morphogenesis Regions and Rock Weathering Regimes Based on the Peltier Model (Case Study: Tajan Watershed)

نویسندگان [English]

  • Sayed Hamid Sadati 1
  • Seyed Ramazan Mousavi 2
  • Ghorban Vahabzadeh Kebria 3
  • Sayed Hussein Roshun 4
1 Ph.D., Student, Department of Watershed Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University , Sari, Iran.
2 Assistant Professor, Department of Watershed Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University
3 Associate Professor of Watershed Management, Department of Watershed Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
4 Ph.D. Graduate of Watershed Management, Department of Watershed Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

Introduction: The Quaternary period stands out for its pronounced climatic fluctuations, which have profoundly impacted geological morphogenesis systems and landforms. These highly variable climatic shifts are of significant interest to geomorphologists, particularly for understanding morphoclimatic and morphodynamic transformations. Earth's surface environments are continuously sculpted by the complex interplay of climate, biological activity, and geological processes. Despite their common perception as symbols of stability, rocks progressively lose their structural integrity over time through weathering processes, whether physical, chemical, or biological. Recent research has increasingly concentrated on the influence of climate change on erosional systems and landform development. A prominent framework in this domain is Louis Peltier’s model, which systematically investigates the effects of temperature and precipitation on geomorphic processes. Peltier's work notably identified seven distinct weathering regimes, incorporating both chemical weathering and frost activity. A deeper comprehension of the drivers behind landform evolution is crucial, as it enhances our capacity to assess geomorphic hazards and environmental potentials, thus playing a vital role in both infrastructure planning and land management.
 
Materials and methods: This study aimed to zone rock weathering regimes within the Tajan watershed based on Peltier's model. To assess the weathering conditions and associated morphogenesis forms across the basin, we acquired climatic variables, specifically annual average temperature and precipitation data, from synoptic stations provided by the Mazandaran Meteorological Department. After addressing statistical deficiencies, including the removal of outliers and the estimation of missing data using regression methods, four synoptic stations with reliable long-term records (1983–2023) were selected for analysis. A geospatial database was subsequently developed in ArcGIS, integrating topographic maps (specifically, elevation classes and slope gradients) and fluvial erosion data. Following the analysis of temperature and precipitation trends at the selected stations, the corresponding weathering regimes were identified using Peltier's model. These regimes were then assigned weighted values, and their spatial distribution maps were generated using the Inverse Distance Weighting (IDW) interpolation method. Finally, leveraging this comprehensive database, we produced morphogenesis maps and maps illustrating the intensity and type of weathering throughout the Tajan watershed, all based on Peltier's classification system.
 
Result: The physical characteristics of the Tajan watershed, including elevation classes, aspect, and erosion, are pivotal in influencing the type and intensity of rock weathering. To facilitate this analysis, relevant maps depicting these variables were prepared. Climate is a central driver of geomorphic processes, hydrological conditions, vegetation cover, wildlife distribution, and human activities. Based on the patterns of temperature and precipitation, the study area is primarily divided into two main climatic types: The Caspian temperate climate and the mountainous climate. The latter further encompasses both temperate and cold subtypes.
 
Our findings indicate that the highest temperatures are recorded in the northwestern part of the region, correlating with lower elevations. Conversely, the lowest temperatures are observed at the Pol Sefid station, which is situated at higher altitudes. Precipitation exhibits a clear south-to-north gradient, with the highest rainfall occurring in the western part of the region during spring. The Amirabad station records the highest annual precipitation (1,025 mm), whereas the Pol Sefid station receives the lowest (210 mm). Climatically and geomorphologically, the watershed is categorized into three distinct zones: semi-arid, temperate, and savanna. Among these, the temperate zone covers the largest area, spanning 1,599 km², while the savanna zone has the smallest extent at 1,269 km². Applying Peltier’s model, three primary types of weathering regimes were identified within the region. Low mechanical weathering is the most extensive, covering an area of 2,630 km². In contrast, very low-intensity weathering is the least extensive, occupying 595 km².
 
Discussion and Conclusion: Weathering processes lead to the disintegration of hard, compacted rocks into fragments of varying sizes, driven by physical, chemical, or biological factors. On steep slopes, these unstable fragments rarely remain in situ; instead, they are mobilized downslope by gravity, mass weight, or transport mechanisms such as sliding, falling, and flowing, ultimately accumulating at the base of slopes. The study of weathering is critical due to its role in rock breakdown and decomposition near the Earth's surface, its intensification of erosion, its contribution to gravitational collapses, its facilitation of landform development, and its influence on mineral deposit concentration and soil formation. The Tajan watershed, our study area, is characterized as a high-rainfall basin with diverse topography, encompassing both lowland and mountainous zones. In the lowlands, minimal temperature fluctuations enhance susceptibility to chemical weathering, a finding consistent with our results. Weathering processes are influenced by a range of environmental parameters, with annual average temperature and precipitation recognized as primary drivers. Peltier’s models, which formed the basis of this study, also rely on these two fundamental climatic indicators. Our research findings indicate that the region’s temperature and precipitation patterns are largely governed by its geographic location (latitude) and topographic structure, including the orientation and alignment of mountain ranges. These factors significantly shape the spatial variability of weathering patterns across the basin. Overall, elevation and slope orientation emerge as key determinants in the formation of weathering regimes and their associated geomorphological features.

کلیدواژه‌ها [English]

  • Tajan Watershed
  • Geographic Information System
  • Morphogenesis Regions
  • Rocks Weathering
  1. Abtahi, M., Bakhshi, T., & Kaviani, B. (2013). Mapping of weathering, erosion and Morphogenesis regions Namk lake basin of Iran by Peletier’s graphs. European Journal of Experimental Biology, 3(4), 118-125.
  2. Autade, S. E., & Pardeshi, S. D. (2017). Assessment of lithology and geomorphic control on slope instability in Raigad district, Maharashtra. Journal of the Geological Society of India, 90(3), 283-288. https://doi.org/10.1007/s12594-017-0716-6.
  3. Dalal Oghli, A. (2002). Investigation of morphological systems in the northern slope of Sabalan and the formation of Meshginshahr accumulation plain. Doctoral dissertation, University of Tabriz. [In Persian].
  4. Das, S., Gupta, A., & Ghosh, S. (2017). Exploring groundwater potential zones using MIF technique in semi-arid region: a case study of Hingoli district, Maharashtra. Spatial Information Research, 25(6), 749-756. https://doi.org/10.1007/s41324-017-0144-0.
  5. Doke, A., Pardeshi, S. D., Pardeshi, S. S., & Das, S. (2018). Identification of Morphogenesis regions and respective geomorphic processes: a GIS approach. Arabian Journal of Geosciences, 11, 1-13. https://doi.org/10.1007/s12517-017-3358-5.
  6. Fowler, R., & Petersen, J. (2003). A Spatial Representation of Louis Peltier’s Weathering, Erosion and Climatic Graphs Using Geographic Information Systems (GIS). Proceedings Esri.
  7. Fowler, R., & Petersen, J. (2004). A spatial representation of Louis Peltier’s weathering, erosion, and climatic graphs using geographic information systems. ESRI User Conference Proceedings. http://proceedings.esri.com/library/userconf/proc04/abstracts/a1752.html.
  8. Gadgil, A. (2002). Rainfall characteristic of Maharashtra. In: Diddee J, Jog SR, Kale VS, Datya VS (eds) Geography of Maharashtra. Rawat Publication, Pune, 89–102.
  9. Gallagher, C. (2024). Glaciation and glaciogenic geomorphology on Earth in the Quaternary Period. In Ices in the Solar-System, 31-71.
  10. Hadi, S. J., & Tombul, M. (2018). Comparison of spatial interpolation methods of precipitation and temperature using multiple integration periods. Journal of the Indian Society of Remote Sensing, 46, 1187-1199. https://doi.org/10.1007/s12524-018-0783-1
  11. Jedari Eyvazi, J. (2006). Efficiency of the Peltier model in classifying glacial regions. Research project, University of Tehran. [In Persian].
  12. Jafari Aghdam, M, Jahanfar, A, & Sadeghi, M. (2012). Zoning of weathering processes in Jajroud river basin using Peltier climatic model. Fourth National Conference of Geography Students, Tehran. [In Persian].
  13. Karami, F. (2004). The Weathering Processes and Their Effects on City and Rural Districts the Mountainous Regions of Azarbaijan. Geography and Development, 2(4), 61-80. [In Persian].
  14. Maghsoudi, M, Khoshakhlagh, F, Hanafi, A, & Rusta, I. (2011). Zoning of Stone Weathering Processes, based on Peltier Models in Northwest of Iran. Physical Geography Research, 42(4), 35-46. [In Persian].
  15. Memarian, H. (2000). Geology for Engineers. University of Tehran Press, fourth edition. [In Persian].
  16. Peltier, L. C. (1950). The geographic cycle in periglacial regions as it is related to climatic geomorphology. Annals of the association of American Geographers, 40(3), 214-236. https://doi.org/10.1080/00045605009352070.
  17. Pinto, G. A., Tavernier, A., Gattacceca, J., Corgne, A., Valenzuela, M., Luais, B., ... & Marrocchi, Y. (2024). Dense collection areas and terrestrial alteration of meteorites in the Atacama Desert. Meteoritics & Planetary Science, 59(2), 351-367. https://doi.org/10.1111/maps.14125.
  18. Ramesht, M.H., & Shoushtari, N. (2004). Ice and glacier work in Salafchegan, Qom. Geographical Research, 73, 119-132. [In Persian].
  19. Vahabzadah Kbriya, G., & Saberi, A. (2021). Analyzing the effect of climatic parameters on weathering of rocks using the Lewis Peltier model, Case study: Southwest of West Azerbaijan Province. Scientific-Research Quarterly of Geographical Data (SEPEHR), 30(118), 217-231. [In Persian].
  20. Yamani, M., Shamsipoor, A.A., Jafari Aghdam, M., & Bagheri Seyed Shokri, S. (2011). Determining the boundaries of Quaternary morphodynamic and morphoclimatic zones in the Jajrood Basin. The Journal of Spatial Planning and Geomatics, 15(3), 83-110. [In Persian].
  21. Zhu, B. (2020). Geomorphological Evolution and Palaeoenvironmental Change in the Western Alashan Plateau, China. Journal of Geological Research, 2(1), 1-19. https://doi.org/10.30564/jgr.v2i1.1942