تحلیل تغییرات عمق اپتیکی هواویزهای غبار و فراوانی وقوع آن‌ها در مناطق مختلف حوزۀ جازموریان با استفاده از فناوری دورسنجی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی محیط زیست، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، ایـران

2 گروه علوم خاک، دانشکده کشاورزی ، دانشگاه جیرفت، جیرفت، ایران

3 گروه علوم و مهندسی محیط زیست، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، ایـران.

4 گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، ایـران

‎10.22052/deej.2025.256804.1106

چکیده

هدف از این مطالعه، تحلیل روند تغییرات بلندمدت عمق اپتیکی هواویزها و فراوانی وقوع گردوغبار در 15 زیرحوزه واقع در حوضۀ آبریز جازموریان است. برای این منظور، از داده‌های شاخص عمق اپتیکی هواویزهای بزرگ‌تر از 5/0 میکرومتر محصول MCD19A2 در بازۀ زمانی 2001 تا 2022 استفاده شد. روند تغییرات بلندمدت در مقیاس‌های زمانی ماهانه، فصلی و سالانه با استفاده از آزمون من-کندال تحلیل شد. نتایج نشان داد که در مقیاس ماهانه، کمترین و بیشترین فراوانی رخدادهای گردوغبار به‌ترتیب در ماه‌های اکتبر و نوامبر و ژوئیه رخ داده است. حداقل و حداکثر عمق اپتیکی هواویزها نیز به‌ترتیب در ماه‌های اکتبر و ژانویه و دسامبر ثبت شده است. در مقیاس فصلی، حداکثر عمق اپتیکی هواویزها و فراوانی وقوع گردوغبار مربوط به فصول تابستان و بهار، و حداقل آن مربوط به فصل پاییز بوده است. حداقل غلظت هواویزها در سال 2002 و حداکثر آن در سال‌های 2012، 2016 و 2022 رخ داده است. هر دو پارامتر مورد بررسی در ماه ژوئن، تغییرات کاهشی را نشان دادند که این تغییرات برای مقادیر غلظت در نواحی جنوب شرقی حوضۀ آبریز جازموریان معنی‌دار بوده است. در سایر ماه‌های سال، اکثر زیرحوزه‌ها روند تغییرات افزایشی را نشان دادند. در مقیاس سالانه، بیش از 50 درصد زیرحوزه‌ها روند افزایشی را تجربه کردند. در مقیاس فصلی نیز تغییرات گردوغبار روند صعودی داشته است؛ به‌طوری‌که حداکثر تغییرات افزایشی فراوانی رخدادهای گردوغبار مربوط به فصول زمستان و بهار و حداکثر تغییرات افزایشی در عمق هواویزها مربوط به فصول زمستان و تابستان بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of Dust Aerosol Optical Depth Changes and Their Frequency in Different Areas of Jazmourian Basin Using Remote Sensing Technology

نویسندگان [English]

  • Zohre Ebrahimi-Khusfi 1
  • Ghobad Jalali 2
  • Mahdiyeh Abbasi 3
  • Sareh Zavari 4
1 Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran
2 Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
3 Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran
4 Department of Fisheries Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
چکیده [English]

Introduction: In recent decades, dust phenomena have emerged as one of the most destructive natural hazards in arid and semi-arid regions, profoundly impacting various aspects of life. These regions, characterized by low humidity, sparse vegetation cover, and vulnerable ecosystems, are inherently prone to dust storms. Iran, owing to its geographical position, is no exception and frequently grapples with this phenomenon, primarily driven by factors such as drought, climatic variations, and human activities. Dust storms pose numerous adverse effects on both the environment and the economy, including air pollution, ecosystem degradation, diminished soil fertility, declining agricultural productivity, and escalating healthcare expenses. The occurrence and frequency of dust events in a given area are influenced by a range of factors, including high wind speeds, low relative humidity, exposed soil surfaces, dry land conditions, local and regional weather systems, short-term precipitation deficits, extensive land degradation, prolonged drought periods, land-use changes, and anthropogenic activities. Airborne particles, especially dust, play a vital role in the climate system, affecting both global temperatures and regional weather patterns. Aerosol Optical Depth (AOD) serves as a pivotal parameter for assessing air quality and investigating particulate pollution. It quantifies the extent to which particles in the atmosphere absorb or scatter sunlight, with higher values indicating increased concentrations of suspended particles, including dust. Particularly in arid and semi-arid zones where dust constitutes a major pollutant, AOD proves to be an effective tool for weather monitoring and air quality forecasting. Various methodologies are employed to measure AOD. Ground-based aerosol robotic networks offer precise spectral aerosol data at specific locations but lack comprehensive spatial coverage. Regional models of atmospheric particulate matter analysis are also in use. However, satellite data, with their high revisit frequency and broad spatial scope, facilitate extensive investigations of dust phenomena. Among these, the MODIS (Moderate Resolution Imaging Spectroradiometer) sensors aboard the Terra and Aqua satellites are extensively utilized. The MCD19A2 product, with a spatial resolution of 1 kilometer, is particularly valuable for studying aerosol properties. Its accuracy is enhanced through the combined use of the Deep Blue and Dark Target algorithms, which are specifically designed to measure optical depth and retrieve particulate matter concentrations. In general, analyzing long-term trends in aerosol optical depth and the frequency of dust aerosol events is crucial for identifying vulnerable areas and devising effective mitigation strategies. While data from synoptic stations can be useful for such analyses, their sparse distribution in the Jazmurian basin limits their effectiveness. Hence, remote sensing technologies and satellite-derived products prove instrumental for comprehensive assessments.  Accordingly, the primary aim of this study is to analyze the long-term (2001–2022) trends in dust aerosol optical depth and their frequency within the sub-basins of the Jazmurian basin, utilizing the MODIS MCD19A2 product. The analysis will be conducted across monthly, seasonal, and annual timescales, employing the Mann-Kendall statistical test to identify significant trends and changes over the two-decade period.
  
Materials and Methods: In this study, 15 sub-basins of the Jazmurian basin were designated as study areas to monitor variations in air particulate matter concentrations. The aerosol optical depth (AOD) product from the MODIS sensor (MCD19A2) was employed for continuous assessment of dust aerosol depths across these sub-basins. Values of optical depth exceeding 0.5 were considered significant, given their strong correlation with numerous parameters related to dust activity measurement. Data for the MCD19A2 satellite product, with a daily temporal resolution and a spatial resolution of 1 kilometer, were separately downloaded for each sub-basin through the Google Earth Engine platform, covering the period from 2001 to 2022. After extracting events where AOD > 0.5, the average AOD values were calculated at monthly, seasonal, and annual scales. To analyze the trends in temporal variations of dust aerosol optical depth, the Mann-Kendall test was employed. This non-parametric statistical method is widely used in the analysis of meteorological time series. Its advantages include its suitability for data that do not follow a specific statistical distribution and its robustness against the influence of extreme values. The null hypothesis of the Mann-Kendall test indicates the presence of randomness and no trend in the data series, while acceptance of the alternative hypothesis suggests a significant trend exists.
Results and Discussion: The analysis revealed that, at the monthly scale, the lowest and highest frequencies of dust events occurred in October/November and July, respectively. The minimum aerosol optical depth (AOD) values were recorded in October, while the maximum AOD was observed in January/December.  Seasonally, the highest aerosol optical depth and dust occurrence frequency were associated with summer and spring, whereas the autumn season exhibited the lowest values. On an annual basis, the lowest frequency of dust events was recorded in 2002 within the Mohammadabad sub-basin, while the highest occurred in 2011 and 2012 in the Hamoun sub-basin. The minimum aerosol concentration was observed in 2002, whereas the maximum levels appeared in 2012, 2016, and 2022. Additionally, it was found that both parameters—dust event frequency and aerosol concentration—showed a decreasing trend in June, which was statistically significant for concentration values in the southeastern regions of the Jazmurian basin. Conversely, most sub-basins exhibited an increasing trend during other months. At the annual scale, over 50% of the sub-basins demonstrated an increasing trend, with this trend being statistically significant in the Rabar, Jiroft, Faryab, Dashtab, and Esfandagheh sub-basins. Seasonally, dust activity also showed an upward trend. The maximum increase in dust event frequency was observed in winter and spring, while the greatest rise in aerosol depth occurred in winter and summer.  Given these findings, implementing dust control strategies and adopting improved natural resource management practices are essential—particularly in sub-basins exhibiting significant upward trends—in order to mitigate serious threats to public health and enhance the quality of life for the local population.

کلیدواژه‌ها [English]

  • Aerosol Optical Depth
  • Wind Erosion
  • Dust Storm
  • Land Degradation
  • Air Quality
  1. Arjmand, M., Rashki, A., & Sargazi, H. (2018). Monitoring of spatial and temporal variability of desert dust over the Hamoun e Jazmurian, Southeast of Iran based on the Satellite Data. Research Quarterly of Geographical Data, 27(106), 153-168. https://doi.org/10.22131/sepehr.2018.32339 [In persian].
  2. Beegum, S. N., Gherboudj, I., Chaouch, N., Temimi, M., & Ghedira, H. (2018). Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula. Atmospheric Research, 199, 62-81. https://doi.org/10.1016/j.atmosres.2017.09.003.
  3. Deep, A., Pandey, C. P., Nandan, H., Singh, N., Yadav, G., Joshi, P. C., & Bhatt, S. C. (2021). Aerosols optical depth and Ångström exponent over different regions in Garhwal Himalaya, India. Environmental Monitoring and Assessment, 193(6), 324. https://link.springer.com/article/10.1007/s10661-021-09048-4
  4. Davarpanah, M., Ahmadpour, M., Shahriari, M., Ghafari Moghadam, Z., & Mirshekari, S. (2024). Estimating -the economic damages of the effects of dust on the beneficiaries of Hamon Wetland. Environmental Science Studies, 8(4), 7541-7556. Doi: 10.22034/jess.2023.379822.1946. [In persian].
  5. Ebrahim Khusfi, Z., & Ranjbar, A. (2024). Analysis of the spatial and temporal changes of the dust aerosols optical depth across different regions of Kerman province in the last 23 years. Environmental Erosion Research Journal, 14(3), 102-122, doi: ‎61186/jeer.14.3.102. [In persian].
  6. Ensafi Moghadam, T. (2021). Investigation of Aerosol Optical Depth Index (AOD) in dust events over Southwestern of Iran. Iran Nature, 5(6), 55-67. doi: 22092/irn.2021.123361 [In persian].
  7. Ghafarian, H., Kiani, A., & Arabi AliAbAd, F. (2023). Investigation the potential of MODIS and Sentinel 5 sensors in estimating the amount of air aerosols (A Case Study: Khuzestan Province). 15(62), 59-72. https://sanad.iau.ir/Journal/jopg/Article/982862 [In persian].
  8. Jahanbakhsh, S., Zeinali, B., & Asghari, S. (2014). Analysis and Clustering of Dust Storm Frequency in Iran by Fuzzy Clustering (FCM). Urban Ecology Researches, 5(10), 85-98. doi: 1001.1.25383930.1393.5.10.5.5. [In persian].
  9. Heidarian, P., Azhdari, A., Joudaki, M., Khatooni, JD., & Firoozjaei, SF. (2018). Integrating Remote Sensing, GIS, and Sedimentology Techniques for Identifying Dust Storm Sources: A Case Study in Khuzestan, Iran. Journal of the Indian Society of Remote Sensing, 46(7), 1113–24. DOI: 10.1007/s12524-018-0774-2
  10. Jebalbarezi, B., Zehtabian, GH., Khosravi, H., & Barkhori, S. (2023). Evaluation of Temporal-Spatial Changes of Climatic Elements Affecting the Occurrence of Dust Phenomenon in Arid and Semi-arid Regions (Case Study: Jazmurian Wetland). Environmental Erosion Research, 13(4), 109-129. doi: 10.61186/jeer.13.4.109. [In persian].
  11. Khan Salari, S., Majidi Dashli, A., Nikzadfar, M., & Mollaarazi, A. (2023). Temporal and spatial changes of dust in Golestan province using AOD (Aerosol Optical Depth) and the affectability of this province from the deserts of Turkmenistan. Earth and Space Physics, 49(2), 517-540. doi: 22059/jesphys.2023.349946.1007462. [In persian].
  12. Kendall, M. (1975). Rank correlation measures, Vol. 202. Charles Griffin, London, 15, 690.
  13. Mann, HB. (1945). Nonparametric tests against trend. Econometrica. Econometric society, 245-59. https://www.jstor.org/stable/1907187.
  14. Mohammadi, P., Montazeri, M., & Masoodian, S. (2024). Evaluation of temporal-spatial changes of aerosol optical depth in the South Baluchestan basin. Natural Environmental Hazards, 13(40), 95-112. doi: 10.22111/jneh.2024.47074.1995 [In persian].
  15. Qaderi Nasab, F., & Rahnama, M. (2018). Detection of Dust Storms in Jazmoriyan Drainage Basin Using Multispectral Techniques and MODIS Image. Physical Geography Research, 50(3), 545-562. doi: 10.22059/jphgr.2018.248345.1007159 [In persian].
  16. Saieedifar, Z., Khosroshahie, M., Gohardoost, A., Ebrahimi Khusfi, Z., Lotfinasab, S., & Dargahian, F. (2020). Investigation of the origin and spatial distribution of high dust concentrations and its synoptical analysis in Gavkhooni basin. Journal of RS and GIS for Natural Resources, 4(11), 47-67. Doi: 30495/girs.2020.676474 [In persian].
  17. Shaheen, A., Wu, R., Yousefi, R., Wang, F., Ge, Q., Jun Wang, K., Alpert, P., & Munawar, (2023). Spatio-temporal changes of spring-summer dust AOD over the Eastern Mediterranean and the Middle East: Reversal of dust trends and associated meteorological effects. Atmospheric Research, 28., https://doi.org/10.1016/j.atmosres.2022.106509.
  18. Singh, K., Verma, P.K., Srivastav, A.L., Mohan, S.P., & Markandeya, D. (2024). Exploring the association between long-term MODIS aerosol and air pollutants data across the Northern Great Plains through machine learning analysis. Science of The Total Environment, 921, https://doi.org/10.1016/j.scitotenv.2024.171117.
  19. Soleimani Sardoo, F., Hosein Hamzeh, N., Karami, S., Nateghi, S., & Hashemi nezhad, M. (2022). Emission and transport of dust particles in Jazmourian basin (Case study: Dust storm 24 to 26 November 2016). Climate Research, 48, 41-54. https://clima.irimo.ir/article_147870.html [In persian].
  20. Soleimani, M., A Argany, M, A Papi, R., & Amiri, F. (2021). Satellite aerosol optical depth prediction using data mining of climate parameters. Physical Geography Research, 53(3), 319-333. doi: 10.22059/jphgr.2021.318600.1007591 [In persian].
  21. Sheikh Ghaderi, S., Alizadeh, T., Ziaeian Firoozabadi, P., & Sharifi, R. (2023). Temporal and spatial analysis of dust storms in Kermanshah. Spatial Analysis Environmental Hazards, 10(1), 71-90. Doi: 61186/jsaeh.10.1.71 [In persian].
  22. Ur Rehman, Z., Tariq, S., Ul haq, Z., & Khan, M. (2024). Impact of meteorological parameters on aerosol optical depth and particulate matter in Lahore. Acta Geophysica, 72, 1377-1395. https://doi.org/10.1007/s11600-024-01291-w.
  23. Yousefi, R., Wang, F., Ge, Q., Shaheen, A., & Kaskaoutis, DG. (2023). Analysis of the winter AOD trends over Iran from 2000 to 2020 and associated meteorological effects. Remote Sensing, 15(4), 905. Doi: 3390/rs15040905.
  24. Valizade Kamran, Kh., & Namdari, S. (2020). Temporal, Spatial Analysis of Aerosols Trend in the Zone of Influence Urmia Aerosols by Processing of Satellite Imageries in 2000, 2015 (Case Study: East Azerbaijan and West Azerbaijan). Geography and Planning, 24(72), 427-446.Doi:10.22034/gp.2020.10826. [In persian].
  25. Zhang, Y., Liu, Y., Kucera, PA., Alharbi, BH., Pan, L., & Ghulam, A. (2015). Dust modeling over Saudi Arabia using WRF-Chem: March 2009 severe dust case. Atmospheric Environment, 119, 118– 30. doi: 10.1016/j.atmosenv.2015.08.032