ارزیابی ظرفیت تاب‌آوری پوشش گیاهی حوزۀ آبخیز شازند استان مرکزی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس

‎10.22052/deej.2025.256065.1088

چکیده

پژوهش حاضر با هدف بررسی وضعیت حوزۀ آبخیز براساس ظرفیت تاب‌آ‌وری پوشش گیاهی انجام شده است. برای این منظور پس از برآورد شاخص پوشش گیاهی NDVI در مقیاس سالیانه برای دورۀ زمانی 1367 تا 1402 به‌صورت مجزا برای هر یک از زیرآبخیزهای مطالعاتی، کمترین مقدار شاخص مذکور در طول دورۀ آماری به‌عنوان حد تاب‌آور تعیین و ظرفیت تا‌ب‌آوری زیرآبخیزهای مختلف براساس مقدار میانگین درازمدت و حد آستانۀ تاب‌آور شاخص پوشش گیاهی NDVI تعیین شد. صحت نتایج حاصل از شاخص ظرفیت تاب‌آوری نیز با استفاده از بازدیدهای میدانی و نتایج حاصل از آن با پراکنش مناطق صنعتی، معدنی، شهری و همچنین مناطق حفاظت‌شده ارزیابی شد. نتایج پژوهش نشان داد که بازۀ شاخص ظرفیت تاب‌آوری حوزۀ آبخیز شازند بین 05/0- و 23/0 قرار گرفته و به‌ترتیب مربوط به زیرآبخیزهای 5 و 15 است. ظرفیت تاب‌آوری پایین در زیرآبخیز ۵ را می‌توان به نزدیکی آن به شهر صنعتی اراک نسبت داد، درحالی‌که ظرفیت تاب‌آوری بالای زیرآبخیز ۱۵ را می‏توان به سطح پایین فعالیت‌های انسانی و هم‌جواری آن با منطقه حفاظت‌شده رویشگاه‌های طبیعی بلوط نسبت داد. همچنین نتایج گویای آن بود که زیرآبخیزهای 5 و 6 از آستانه تاب‌آوری پوشش گیاهی خود خارج شده‌اند. ازسوی دیگر، به‌رغم تغییرات شدید کاربری اراضی در محدودۀ شهرک مهاجران، قابلیت تاب‌آوری آن به‌دلیل افزایش پوشش گیاهی براثر افزایش قابل توجه فضای سبز شهری بالا بوده است. رویکرد حاضر می‌تواند به‌عنوان ابزار جدید و کاربردی در برنامه‌ریزی اقدامات مدیریتی و بازیابی پوشش گیاهی در زیرآبخیزهای با ظرفیت تاب‌آوری پایین مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Vegetation Resilience Capacity Index in the ShazandWatershed, Markazi Province, Iran

نویسندگان [English]

  • Mostafa Zabihi Silabi
  • Seyed Hamidreza Sadeghi
  • Mehdi Vafakhah
Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University
چکیده [English]

Introduction: The sustainability of watersheds is influenced by a wide range of factors, including environmental conditions, land-use patterns, and the inherent resilience of the ecosystem. Resilience, in this context, refers to the ability of the watershed to withstand disturbances, adapt to changing conditions, and recover from environmental stressors such as droughts, floods, or land degradation. Understanding the resilience of a watershed is crucial for managing its resources effectively and ensuring its long-term ecological health. Identifying resilience threshold points in watersheds is particularly valuable, as these thresholds mark the critical limits beyond which the ecosystem may no longer be able to recover or function as it once did. These thresholds can help predict the behavior of these areas when faced with environmental disturbances or long-term changes, such as climate change or increased human activity. By recognizing these threshold points, watershed managers and policymakers can make more informed decisions about land and water management practices to avoid crossing these critical limits and to maintain or enhance the ecological stability of the area. Moreover, identifying resilience thresholds is essential for predicting the watershed's response to stress and improving management strategies. For example, understanding how various factors like vegetation cover, soil quality, and water availability influence resilience can help formulate adaptive management strategies that aim to restore or enhance the resilience of a watershed. These strategies include restoring degraded areas, improving land-use practices, and promoting sustainable resource management.
 
Materials and Methods: This study used the vegetation resilience capacity index to assess vegetation cover changes in the Shazand watershed in Markazi Province, Central Iran. This index was designed to evaluate the state of vegetation cover compared to the resilience threshold under various environmental changes. Initially, a time series of vegetation cover was estimated using the NDVI index, and the mean and minimum values of vegetation cover were considered as the current and resilient thresholds, respectively. Then, the resilience capacity index was calculated for 24 sub-watersheds, and the studied sub-watersheds were accordingly prioritized for management actions.
 
Results: The results of this study underscore the critical need to identify resilience thresholds within watersheds, as exceeding these thresholds in certain sub-watersheds can lead to severe consequences such as soil erosion, a decrease in water reserves, and a decline in biodiversity. The results showed that the resilience capacity of the study sub-watersheds ranged from -0.05 to 23.0, corresponding to sub-watersheds 5 and 15, respectively. The results also indicated that sub-watersheds 5 and 6 had exceeded their vegetation resilience threshold. Implementing targeted management programs for vegetation restoration and enhancing resilience in these vulnerable areas is crucial to prevent further degradation. Additionally, the study reveals that land-use changes can have opposing effects on vegetation resilience. In some regions, such changes have contributed to a decrease in resilience. In contrast, in other areas, such as near the Mohajeran, improvements in resilience were noted, which emphasizes the importance of proactive land management and the protection of vegetation cover. These findings highlight the role of sustainable land-use practices and the necessity of continuous monitoring to ensure the resilience of watershed ecosystems.
 
Discussion and Conclusion: In this study, the simple vegetation resilience capacity index was utilized as an innovative and effective tool to assess the resilience of vegetation in the Shazand Watershed. The results demonstrated that the resilience capacity of vegetation varied across different sub-watersheds, highlighting the need for tailored management approaches in certain areas to restore or enhance their resilience. Specifically, some sub-watersheds were found to be more vulnerable, requiring targeted interventions to prevent further degradation. Moreover, the study revealed that land-use management influences vegetation resilience, particularly in urban areas. Effective land management strategies, such as increasing vegetation cover in regions with significant land-use changes, were identified as key measures to improve the resilience capacity of the watershed. This approach not only helps mitigate environmental stressors but also enhances the ecological stability of the region. The findings of this research offer valuable insights and can be applied as a practical tool in management planning, facilitating the conservation and restoration of ecosystems within watersheds. Furthermore, the results can guide the development of efficient and sustainable strategies to combat environmental degradation, ensuring the long-term sustainability of vital natural resources.

کلیدواژه‌ها [English]

  • Integrated Watershed Management
  • Management Planning, Resilience Threshold, Watershed Elasticity
  1. Acosta Salvatierra, L. H., Ladle, R. J., Barbosa, H., Correia, R. A., & Malhado, A. C. (2017). Protected areas buffer the Brazilian semi‐arid biome from climate change. Biotropica, 49(5), 753-760.
  2. Ansari, A., Rajaeian, M., Fahimi, R., & Jamshidi, R., (2022). Environmental status assessing of the Mohajeran City with Green City Indicators. Environmental Researches, 12(24), 117-130. In Persian
  3. Baltrėnas, P., Baltrėnaitė, E., Šerevičienė, V., & Pereira, P., (2011). Atmospheric BTEX concentrations in the vicinity of the crude oil refinery of the Baltic region. Environmental monitoring and assessment, 182, 115-127.
  4. Bestelmeyer, B. T. (2006). Threshold concepts and their use in rangeland management and restoration: the good, the bad, and the insidious. Restoration Ecology, 14(3): 325-329.
  5. Chauhan, A., Roy, S., & Kundu, A. (2024). Assessing sediment dynamics and retention services in the vulnerable mountain ecosystem of the Indian Himalayas. Environmental Monitoring and Assessment, 196(10), 928.
  6. Chen, H., Tang, L., Qiu, Q., Hou, L., & Wang, B. (2020). Construction and case analysis of an index for the sustainability of ecosystem services. Ecological Indicators, 115: 106370.
  7. Cherniak, L., Mikhyeyev, O., Madzhd, S., Lapan, O., Dmytrukha, T., & Petrusenko, V., (2021). Determination of the dependence of the plant growth characteristics on the concentration of petrochemicals in the Soil. Ecological Engineering, 22(2), 226-233.
  8. Darabi, H., Solaimani, K., Shahedi, K., & Miryaghubzadeh4, M. (2013). Sub-Watersheds Classification Based on Morphometric Parameters Using Cluster Analysis in Pol-Doab Shazand Watershed. Water and Soil Science, 22(4), 199-211. In Persian
  9. Davudi rad, A.A., Sadeghi, S.H.R., & Sadoddin., A., (2016). The impact of development plans on hydrological changes in the Shazand Watershed, Iran. Land Degradation & Development, 27(4): 1236-1244.
  10. Fatimazahra, E., Mohamed, T., & Salih, S., (2024). Assessment of the impact of covid-19 related containment on the normalized vegetation index – a remote sensing study of the korifla sub watershed, morocco. Ecological Engineering &Amp.; Environmental Technology, 25(6), 1-9.
  11. Folke, C., Pritchard, L., Berkes, F., Colding, J., & Svedin, U. (2007). The problem of fit between ecosystems and institutions: Ten years later. Ecology and Society, 12(1), 30.
  12. Gao, Y., Zhong, B., Yue, H., Wu, B., & Cao, S., (2011). A degradation threshold for irreversible loss of soil productivity: a long‐term case study in China. Journal of Applied Ecology, 48(5), 1145-1154.
  13. Gleick, P. H. (2003). Water use. Annual Review of Environment and Resources, 28(1), 275-314.
  14. González-García, A., Palomo, I., Arboledas, M., González, J. A., Múgica, M., Mata, R., & Montes, C., (2022). Protected areas as a double edge sword: An analysis of factors driving urbanisation in their surroundings. Global Environmental Change, 74, 102522.
  15. Hazbavi, Z., Sadeghi, S.H.R., & Gholamalifard, M. (2018). Land cover-based watershed health assessment. AGROFOR International Journal, 3, 47-55.
  16. Hou, Y., & Wei, X., (2024). Forest disturbance thresholds and cumulative hydrological impacts. Water Resources Research, 60(5), e2024WR037339.
  17. Jafari, G. H., & Amani, S. (2023). Hydrological thresholds of Urmia Water Basin. Geography and Development, 21(73), 47-69. In Persian
  18. Jones, K. B., Murdock, J. N., & Broughton, K. L. (2019). Evaluating watershed management strategies for improving water yield: Prioritizing areas for intervention. Water Resources Management, 33(8), 1235-1249.
  19. Kazemi, M. & Jafarpoor, A. (2024). Identifying the threshold of variables affecting flood zones using machine learning technique (Case study: the downstream region of the Karun River). Water and Soil Management and Modelling, 4(1), 214-232. In Persian
  20. Lee, J., Park, M., Choi, B., Kim, J., & Na, E. H. (2024). Analyzing Priority Management for Water Quality Improvement Strategies with Regional Characteristics. Water, 16(10), 1333.
  21. Malav, A., Dadhich, P., & Jaiswal, P. (2023). Comparative study of Phytosociological status of herbs and Shrubs in Nanta forest region, Rajasthan, India. Journal of Agriculture and Ecology Research International, 24(6), 83-99.
  22. Mehta, A., Shukla, S., & Rakholia, S. (2021). Vegetation change analysis using normalized difference vegetation index and land surface temperature in greater Gir landscape. Journal of Scientific Research, 65(3), 1-6.
  23. Mirchooli, F., Sadeghi, S.H.R., & Khaledi Darvishan, A. (2018). Reconnaissance assessment of watershed sustainability using spatial and temporal variations of vegetation cover. 13th National Conference on Watershed Sciences and Engineering of Iran and the 3rd National Conference on Conservation of Natural Resources and Environment. University of Mohaghegh Ardabili, Ardabil, Iran.1-6.
  24. Moradpour, Z., Shahna, F. G., Bahrami, A., Soltanian, A., & Hesam, G. (2017). Evaluation of volatile organic compounds at petrochemical complexes in Iran. Health Scope, 6(4). In Press.
  25. Pahl-Wostl, C. (2007). Transitions towards adaptive management of water facing climate and global change. Water Resources Management, 21(1), 49-62.
  26. Paiva, R. J. O., Brites, R. S., & Machado, R. B., (2015). The role of protected areas in the avoidance of anthropogenic conversion in a high pressure region: a matching method analysis in the core region of the Brazilian Cerrado. PloS one, 10(7), e0132582.
  27. Pires, A. P., Rezende, C. L., Assad, E. D., Loyola, R., & Scarano, F. R. (2017). Forest restoration can increase the Rio Doce watershed resilience. Perspectives in ecology and conservation, 15(3), 187-193.
  28. Portal for Providing Basic Statistics. (2022). Water Resources Management Company of Iran, Office of Basic Water Resources Studies.https://stu.wrm.ir/tbl_amarrequests_add.asp.
  29. Ragothaman, A. & Anderson, W. A., (2017). Air quality impacts of petroleum refining and petrochemical industries. Environments, 4(3), 66.
  30. Relić, D., Sakan, S., Anđelković, I., Popović, A., & Đorđević, D. (2019). Pollution and health risk assessments of potentially toxic elements in soil and sediment samples in a petrochemical industry and surrounding area. Molecules, 24(11), 2139.
  31. Rezaei, R. & Ghaffarian, S. (2021). Monitoring forest resilience dynamics from very high-resolution satellite images in case of multi-hazard disaster. Remote Sensing, 13(20), 4176.
  32. Sadeghi, S.H.R. & Hazbavi, Z., (2017). Spatiotemporal variation of watershed health propensity through reliability-resilience-vulnerability based drought index (case study: Shazand Watershed in Iran). Science of the Total Environment, 587, 168-176.
  33. Saemipoor, H., Ghorbani, M., & Malekian, A. (2018). Evaluating local beneficiary's resilience encountered with prolonged drought condition (Case study: Nardin village, Mayamey county, Semnan province). Rangeland, 12(1), 62-72. In Persian
  34. Soltani, N. & Mohammadnejad, V. (2021). Efficiency of Google Earth Engine (GEE) system in land-use change assessment and predicting it using CA-Markov model (Case study of Urmia plain). Journal of RS and GIS for Natural Resources, 12(3), 23-26. In Persian
  35. Sze, J. S., Carrasco, L. R., Childs, D., & Edwards, D. P. (2022). Reduced deforestation and degradation in Indigenous Lands pan-tropically. Nature Sustainability, 5(2): 123-130.
  36. Tongway, D. J. & Hindley, N. (2004). Landscape function analysis manual: procedures for monitoring and assesssing landscapes with special reference to minesites and rangelands. Canberra, CSIRO Sustainable Ecosystems.
  37. Tucker, C.J., Slayback, D.A., Pinzon, J.E., Los, S.O., Myneni, R.B., & Taylor, M.G. (2001). Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 45(4): 184-19.
  38. Walker, B., & Salt, D. (2006). Resilience thinking: Sustaining ecosystems and people in a changing world. Washington, DC: Island Press.
  39. Xie, B., Jia, X., Qin, Z., Shen, J., & Chang, Q. (2015). Vegetation dynamics and climate change on the loess plateau, china: 1982–2011. Regional Environmental Change, 16(6), 1583-1594.
  40. Yi, M., Zhang, S., Li, M., Xiang, J., Tang, B., Yan, X., & An, T. (2022). Spatial distribution profiles and human-health risks of heavy metals in surrounding area surface soils of a petrochemical complex. International Journal of Environmental Research and Public Health, 19(24), 16930.
  41. Zabihi Silabi, M., Sadeghi, H.R., & Vafakhah, M., (2022). Concept and Necessity of Watershed Elasticity. Extension and Development of Watershed Management, 10(39), 30-37. In Persian
  42. Zabihi Silabi, M., Sadeghi, S.H.R., & Vafakhah, M., (2024). Soil erosion elasticity initiative for prioritizing sub-watersheds. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2024.12.001.

Zhang, Y., Wang, X., Li, C., Cai, Y., Yang, Z., & Yi, Y. (2018). NDVI dynamics under changing meteorological factors in a shallow lake in future metropolitan, semiarid area in North China. Scientific reports, 8(1), 15971