تحلیل الگوی فضایی وضعیت خشکسالی در زاگرس میانی و جنوبی با استفاده از شاخص های سنجش ازدور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

2 پژوهشکده حفاظت خاک و آبخیزداری سازمان تحقیقات و آموزش و ترویج کشاورزی

3 گروه سنجش از دور و GIS، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

‎10.22052/deej.2022.113659

چکیده

خشکسالی یکی از جدی ترین مخاطرات طبیعی است که بر کیفیت زندگی همه موجودات زنده تاثیرگذار است. ایران سرزمینی کم باران که طی اعصار، با تهدید این مخاطره طبیعی مواجه بوده است. هدف این مطالعه بررسی شاخص های سنجش از دوری موثر بر تحلیل خشکسالی و تبیین الگوی خودهمبستگی فضایی در زاگرس میانی و جنوبی می باشد. در این راستا با بهره از آمار روزانه بارش 103 ایستگاه هواشناسی طی دوره های زمانی 2000  تا  2019 داده های مورد نیاز تهیه و مقادیر SPI متناظر ایستگاه های مذکور مربوط به ایستگاه های هواشناسی استخراج گردید. سپس شاخص های NDVI  ،  VCI، TCI ، VHI ، DDI ، NDDI ، EVI ،  NDWI  و  SAVI بر تصاویر سنجنده مادیس اعمال و نقشه های خشکسالی تهیه گردید و عوامل موثر، به کمک تحلیل عاملی و الگوی فضایی شاخص خشکسالی با شاخص های سنجش از دور و تحلیل فضایی، تجزیه و تحلیل شدند. نتایج حاکی از کارآیی بهتر شاخص­های SAVI، NDVI، VCI و EVI در بررسی خشکسالی بوده است. همچنین، شاخص SPI با بیشتر شاخص های پوشش گیاهی، الگوی خودهمبستگی فضایی مثبتی را نمایان کرده است. این در حالی است که در بین شاخص­های یاد شده VHI کمترین اثربخشی را تحلیل خشکسالی ارائه نمود

کلیدواژه‌ها


عنوان مقاله [English]

Spatial pattern analysis of drought situation in Central and South Zagros using remote sensing indicators

نویسندگان [English]

  • Salar Mirzapour 1
  • , Mir Masoud Kheirkhah Zarkash 2
  • Zahra Azizi 3
1
2
3
چکیده [English]

Drought is one of the most serious natural hazards that affects the quality of life of all living things.  Iran is a low-rainfall land that has been threatened by this natural hazard for centuries. The purpose of this study was to evaluate the remote sensing indicators effective on drought analysis and explain the pattern of spatial autocorrelation in the central and southern Zagros.  In this regard, using the daily rainfall statistics of 103 meteorological stations during the period 2000 to 2019, the required data were prepared and corresponding SPI values ​​were extracted from 103 location points related to meteorological stations.

کلیدواژه‌ها [English]

  • Drought
  • Zagros
  • SAVI
  • NDVI
  • VCI
  • EVI
  • SPI index
  1. Abedzadeh, M., Aristotle, B. and Nankeli, H., 2018. Agricultural drought risk analysis using remote sensing and GIS techniques (study area: Semnan province). Application of geographic information system and remote sensing in planning, 9(1), pp.18-36.
  2. Ahmadalipour, A., Moradkhani, H., Castelletti, A. and Magliocca, N., 2019. Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Science of the Total Environment, 662, pp.672-686.
  3. Akhzari, D., Asadi Meyabadi, Ahmad and Nouri. Hamid., 2015. Studying the effects of drought on vegetation changes in rangeland and agricultural areas based on field and satellite data (Case study: Southern part of Hamadan Province). Journal of pastureland. 2 (1), pp.23-34.‎
  4. Alijani, Dr. Bahloul, Dostkamian, Mehdi, Ashrafi, Saeeda, Shakri, Fahima. (2014). "Investigation of changes in intra-decadal spatial autocorrelation patterns of Iran's rainfall during the last half century", Geography and Regional Urban Studies, 5(14), pp. 71-88. doi: 10.22111/gaij.2015.1914
  5. Anderson, M.C., Hain, C., Otkin, J., Zhan, X., Mo, K., Svoboda, M., Wardlow, B. and Pimstein, A., 2013. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with US Drought Monitor classifications. Journal of Hydrometeorology, 14(4), pp.1035-1056.
  6. Asadi Meyabadi, A. Akhzari, D. and Nouri, H. 2021. Zoning of Drought by Integrating Satellite Imagery and Ground–Based Climate Data (Case study: Malayer Plain). Journal of Environmental Science and Technology, 23(4), pp. 83-96.
  7. Bachmair, S., Tanguy, M., Hannaford, J. and Stahl, K., 2018. How well do meteorological indicators represent agricultural and forest drought across Europe?. Environmental Research Letters, 13(3), p.034042.
  8. Barker, L.J., Hannaford, J., Chiverton, A. and Svensson, C., 2015. From meteorological to hydrological drought using standardised indicators. Hydrology & Earth System Sciences Discussions, 12(12).
  9. Carrão, H., Naumann, G. and Barbosa, P., 2016. Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change, 39, pp.108-124.
  10. Dastorani, M. and Komaki, C.B., 2015. The effect of drought on vegetation using MODIS satellite Khorasan Razavi. Desert Ecosystem Engineering Journal, 4(7), pp.1-8.
  11. Ebrahimi Khusfi, Z. and Zarei, M., 2020. Relationships between meteorological drought and vegetation degradation using satellite and climatic data in a semi-arid environment in Markazi Province, Iran. Journal of Rangeland Science, 10(2), pp.204-216.
  12. Eltahir, E.A. and Yeh, P.J.F., 1999. On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resources Research, 35(4), pp.1199-1217.
  13. Farahmand, A. and AghaKouchak, A., 2015. A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76, pp.140-145.
  14. Fazel Dehkordi, L., Sohrabi, T.A., Ghanavizbaf, M.H. and Ghazavi, R., 2016. Drought monitoring by using of MODIS satellite images in dry lands (Case study: Isfahan Rangelands). Geography and Environmental Planning, 27(3), pp.177-190.
  15. Field, C.B., Barros, V., Stocker, T.F. and Dahe, Q. eds., 2012. Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press.
  16. Gu, Y., Brown, J.F., Verdin, J.P. and Wardlow, B., 2007. A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical research letters, 34(6).
  17. Hagenlocher, M., Meza, I., Anderson, C.C., Min, A., Renaud, F.G., Walz, Y., Siebert, S. and Sebesvari, Z., 2019. Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environmental Research Letters, 14(8), p.083002.
  18. Hannaford, J., Lloyd‐Hughes, B., Keef, C., Parry, S. and Prudhomme, C., 2011. Examining the large‐scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrological Processes, 25(7), pp.1146-1162.
  19. Huang, S., Li, P., Huang, Q., Leng, G., Hou, B. and Ma, L., 2017. The propagation from meteorological to hydrological drought and its potential influence factors. Journal of Hydrology, 547, pp.184-195.
  20. Johanna, H. and Minoia, P., 2017. Social aspects of water scarcity and drought.
  21. Karimi Mahshid, Shahidi Kaka, Raziei Tayyab and Miriyagoubzadeh Mirhossein, Investigating the efficiency of vegetation indicators in agricultural drought analysis using remote sensing technique in Karkheh watershed.‎
  22. Lott, N. and Ross, T., 2006. 1.2 Tracking and evaluating US billion- dollar weather disasters, 1980–2005. Retrieved on March.
  23. McKee, T.B., Doesken, N.J. and Kleist, J., 1993, January. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).
  24. Mirahsani M, Salman Mahiny A, Soffianian A, Moddares R, Jafari R, Mohammadi J. Evaluation of Vegetation Supply Water Index through Time-Series Images of MODIS Products in Drought Monitoring over Gavkhuni Basin. ijae. 2018. 6 (4) :31-47
    URL: http://ijae.iut.ac.ir/article-1-854-fa.html
  25. Mishra, A.K. and Singh, V.P., 2010. A review of drought concepts. Journal of hydrology, 391(1-2), pp.202-216.
  26. Mohammadi Shaygani Ebrahim, Ismaili Ali, Drought Monitoring Using Remote Sensing Techniques and Rainfall Anomaly Index (RAI), 2015, National Geomatic Conference, Tehran, Iran
  27. Ord, J.K. and Getis, A., 1995. Local spatial autocorrelation statistics: distributional issues and an application. Geographical analysis27(4), pp.286-306.
  28. Pourkhosravani, M., Mehrabi, A. and Mousavi, S.H., 2018. Drought spatial analysis of Sirjan basin using remote sensing. Desert Ecosystem Engineering Journal, 7(20), pp.13-22.
  29. Pozzi, W., Sheffield, J., Stefanski, R., Cripe, D., Pulwarty, R., Vogt, J.V., Heim, R.R., Brewer, M.J., Svoboda, M., Westerhoff, R. and Van Dijk, A.I., 2013. Toward global drought early warning capability: Expanding international cooperation for the development of a framework for monitoring and forecasting. Bulletin of the American Meteorological Society, 94(6), pp.776-785.
  30. Rahimzadeh Bajgiran, P.R., Darvishsefat, A.A., Khalili, A. and Makhdoum, M.F., 2008. Using AVHRR-based vegetation indices for drought monitoring in the Northwest of Iran. Journal of Arid Environments, 72(6), pp.1086-1096.
  31. Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M. and Reichstein, M., 2012. Changes in climate extremes and their impacts on the natural physical environment.
  32. Sivakumar, M.V., Stefanski, R., Bazza, M., Zelaya, S., Wilhite, D. and Magalhaes, A.R., 2014. High level meeting on national drought policy: Summary and major outcomes. Weather and climate Extremes, 3, pp.126-132.
  33. UNISDR, U., 2015, March. Sendai framework for disaster risk reduction 2015–2030. In Proceedings of the 3rd United Nations World Conference on DRR, Sendai, Japan (Vol. 1).
  34. Van Loon, A.F., dan van Lanen HAJ 2012. A process-based typology of hydrological drought. Hydrol. Earth Syst. Sci, 16, pp.1915-1946.
  35. Van Loon, A.F., 2013. On the Propagation of Drought.: How Climate and Catchment Characteristics Influence Hydrological Drought Development and Recovery. Wageningen University and Research.
  36. Van Loon, A.F., Tijdeman, E., Wanders, N., Van Lanen, H.J., Teuling, A.J. and Uijlenhoet, R., 2014. How climate seasonality modifies drought duration and deficit. Journal of Geophysical Research: Atmospheres, 119(8), pp.4640-4656.
  37. Van Loon, A.F., Gleeson, T., Clark, J., Van Dijk, A.I.J.M., Stahl, K., Hannaford, J., Di Baldassarre, G., Teuling, A.J., Tallaksen, L.M., Uijlenhoet, R. and Hannah, D.M., 2016. Drought in the Anthropocene, Nat. Geosci., 9, 89–91.
  38. Wilhite, D.A., 2000. Drought as a natural hazard: concepts and definitions.
  39. Svoboda, M.D. and Fuchs, B.A., 2016. Handbook of drought indicators and indices (pp. 1-44). Geneva, Switzerland: World Meteorological Organization.
  40. Yu, J., Lim, J. and Lee, K.S., 2018. Investigation of drought-vulnerable regions in North Korea using remote sensing and cloud computing climate data. Environmental monitoring and assessment, 190(3), pp.1-16.
  41. Zhang, L., Yao, Y., Bei, X., Jia, K., Zhang, X., Xie, X., Jiang, B., Shang, K., Xu, J. and Chen, X., 2019. Assessing the remotely sensed evaporative drought index for drought monitoring over Northeast China. Remote sensing, 11(17), p.1960.