بررسی و ارزیابی بافت و چگالی خاک در کاربری‌ اراضی‌های مختلف با استفاده ازسامانه Google Earth Engine

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه هرمزگان

2 دانشکده محیط زیست، دانشگاه تهران

‎10.22052/deej.2022.113656

چکیده

آگاهی از کیفیت خاک در اراضی کشاورزی و منابع طبیعی برای رسیدن به حداکثر تولید و پایداری محیط ‏زیست ضروری می‌باشد. هدف از این تحقیق، بررسی وضعیت بافت و چگالی خاک در کاربری‌های مختلف و ارزیابی تعیین مقادیر کمی آن با استفاده از سامانه Google Earth Engine است. به این منظور، حوضه آبخیر رودان به پنج کاربری شامل: مراتع متوسط، مراتع فقیر، زمین­های زراعی و باغی و مسیل­ها تقسیم­بندی شد. درکاربری­های مختلف جمعاً 218 نمونه از سطح صفر تا10سانتیمتری خاک برداشته و آزمایش­های تعیین بافت، درصد شن و رس و چگالی با استفاده از روش هیدرومتری و پارافین بلک انجام شد. در گوگل ارث انجین از Open Land Map استفاده شده است. جهت ارزیابی و صحت­سنجی نتایج، از ضریب آماری آنالیز واریانس، صحت کلی و ضریب کاپا استفاده شد. اعتبارسنجی نتایج به­دست آمده از سرویس گوگل ارث انجین نشان دهندۀ 95 درصد صحت کلی و ضریب کاپای 93/0 است. همچنین طی تغییر کاربری با پوشش وسیع به اراضی زراعی، میزان رس و سیلت کاهش و درصد شن افزوده خواهد شد. طبق نتایج کمترین و بیشترین مقادیر شن در زمین­های کشاورزی و مراتع متوسط به ترتیب 49% و 78% است. همچنین مقدار رس از کمترین میزان 5/6٪ در مرتع متوسط تا بالاترین 26٪ در زمین‌های کشاورزی متغیر است. نتایج به دست آمده از مقادیر ماسه و رس نشان داد با تغییر کاربری از پوشش گیاهی با تراکم بالا (جنگل) به تراکم پایین (اراضی مرتعی و زراعی) درصد رس و سیلت کاهش و میزان شن افزایش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation and evaluation of soil texture and density in different land uses using Google Earth Engine system

نویسندگان [English]

  • Maryam Heydarzadeh 1
  • Ahmad Nohegar 2
1
2
چکیده [English]

Introduction
Awareness of soil quality in agricultural lands and natural resources is essential to achieve maximum production and environmental sustainability. Although soil quality is not directly assessed, the use of soil quality indicators is widely used today. Among these, physical indicators of soil quality are of great importance in estimating soil quality due to the direct impact on plant growth and chemical and biological properties of soil. It is necessary to evaluate the quality of the soil and to consider its changes when using the land for the designated uses, before exploiting the land. The use of satellite imagery and GIS to extract the required information and map soil indicators to make optimal decisions has become an integral part of sustainable land management. Soil quality varies in different land uses due to changes in the physical, chemical and biological properties of the soil as well as land degradation by humans. Therefore, by having a land use map, the soil quality index can be obtained in each unit. Various studies on soil index in relation to land uses have been performed using remote sensing techniques, which show that unscientific and uninformed changes in land use have negative effects on the desired physical and chemical properties of soil. The purpose of this study is to investigate the condition of soil texture and density in different land uses and evaluate its quantification using Google Earth Engine system.
Material and Methods
Rudan basin is one of the sub-basins of the Minab watershed. Rainfall distribution in the study area is not uniform and is a pattern with about 242 mm of average annual rainfall data, of which more than 77% occurs during the rainy season (autumn and winter). On the other hand, the average minimum, maximum and average annual temperatures for the period 1980 to 2020 are 18.1, 33.02 and 25.7 ° C, respectively, and the average annual evaporation is 2858 mm. The study area was divided into 5 uses of medium and poor pastures, agricultural and garden lands and canals. In different applications, a total of 218 samples were taken from the surface of zero to 10 cm of soil and experiments to determine the texture, percentage of sand and density and density were performed using hydrometric and paraffin black methods. Open Land map is used in Google Earth Engine. For this purpose, the location of the study area in the Google Earth Engine system was first defined. The data used include Landsat series images with a resolution of 250 meters and related to the statistical period of January 1, 1950 to January 1, 2018. The location of the captured points was determined using GPS in Arc GIS 10.3 software. To evaluate and validate the results, the statistical coefficient of analysis of variance, overall accuracy and kappa coefficient was used.
Result and Conclusion
 Validation of the results obtained from the Google Earth Engine service shows 95% of the total accuracy and kappa coefficient of 0.93. Also, during the change of use with extensive coverage of agricultural lands, the amount of clay and silt will decrease and the percentage of sand will increase. This is consistent with the findings of Bewket and Stroosnijder (2003); Martinez et al. (2008) and Riahi et al., (2016) who found in their studies that during the change of forest use to agricultural and garden lands, the amount of clay and silt decreased and The amount and percentage of sand will be increased. According to studies (Aghdami et al., 2019; Zare et al., 2011; Wang et al., 2012) the physical properties of soil, especially soil texture is one of the most important determinants in the distribution of plant communities in different uses. According to the different uses and agricultural activities in the region, which is the occupation of the majority of the population and according to the strategic document of the province, the study area is considered as agricultural territory (Hormozgan Management and Planning Organization, 2019) witnesses a variety of land use changes. We are in different regions (Hormozgan Agricultural Jihad Office, 2021), On the other hand, any conversion of one land use to another may lead to the loss of natural resources and agricultural biodiversity (Rawat and Kumar, 2015; Seyum et al., 2019). Given the importance of agriculture in the region, any change in land use should be considered in the medium and long term planning. Therefore, I need detailed, up-to-date, low-cost and fast surveys to prepare development plans for various types of applications that use the data available in the online image processing system of Google Earth satellite engine, Landsat satellite images in a fraction of the minutes are processed and analyzed for evaluation and planning. This system is a safe and cost-free way to process large volumes of satellite images from various sources, which speeds up processing very well, which saves a lot of time.

کلیدواژه‌ها [English]

  • soil texture
  • land use
  • Google Earth Engine
  • Rudan Basin
  1. Abebe, Getu., Tsunekawa, A., Haregeweyn, N., Takeshi, T., Wondie, M., Adgo, E., Masunaga, T., Tsubo, M., Ebabu, K., Berihun, M.L. and Tassew, A. 2020. Effects of Land Use and Topographic Position on Soil Organic Carbon and Total Nitrogen Stocks in Different Agro-Ecosystems of the Upper Blue Nile Basin. Sustainability 2020, 12, 2425; doi:10.3390/su12062425
  2. Asadzadeh, F., Khosraviaqdam, K., Yaghmaeian Mahabadi, N. and Ramezanpour, H. 2019. Spatial Variation of Mineral Particles of the Soil using Remote Sensing Data and Geostatistics to the Soil Texture Interpolation. Journal of Water and Soil, Vol. 32, No. 6, Jan.-Feb. 2019, p. 1207-1222
  3. Abdolahi, J., Baghestanimeybodi, N. Dashtkian, K. and Rahimian, M.R. 2006. Determination of range condition using GIS and RS. Journal of agricultural science and natural resources, 15, 1-16.
  4. Afify HA. 2011. Evaluation of change detection techniques for monitoring land-cover changes: A case study in new Burg El-Arab area. Alexandria Engineering Journal, 50(2): 187-195. doi:https://doi.org/10.1080 /014311698216062
  5. Bewket, W. and Stroosnijder, I. 2003. Effects of agro- ecological land use succession on soil properties in Chemoga Watershed, Blue Nil Basins, Ethiopia. Geoderma 111: 85-95.
  6. Black, C.A., 1986. Methods of Soil Analysis. Part 1. ASA. Madison, W1.9: 545-566
  7. Banai, M. 2001. Map of resources and talents of Iranian soils. Iran Soil and Water Research Institute, Tehran
  8. Boruvka, L., Pavlu, L., Vasat, R., Penizek, V. and Drabek, O. 2008. Delineating acidified soils in the JizeraMountains region using fuzzy classification. PP. 303–309. In: Hartemink, A.E. McBratney, A. and Mendonça-Santos, M.L. (Eds.), Digital Soil Mapping with Limited Data. Springer, Netherlands.
  9. Brungard, C.W., Boettinger, JL., Duniway, MC., Wills, SA. and Edwards Jr, TC. 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239-240: 68-83
  10. Banko, G. 1998. A review of assessing the accuracy of classifications of remotely sensed data and of methods including remote sensing data in forest inventory. 1998
  11. Deng C. and Wu, C. 2012. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 127: 247-259. doi:https://doi.org/10.1016/j.rse.2012.09 .009.
  12. Eghdami, H., Azhdari, G., Lebailly, P. and Azadi, H. 2021. Impact of Land Use Changes on Soil and Vegetation Characteristics in Fereydan, Iran. Agriculture 2019, 9, 58; doi: 10.3390 /agriculture 9030058
  13. Forests, Rangelands and Watershed Management Organization. 2019.
  14. Fentie, S.F., Jembere, K., Fekadu, E. and Wasie, D. 2020. Land Use and Land Cover Dynamics and Properties of Soils under Different Land Uses in the Tejibara Watershed, Ethiopia. The Scientific World Journal, Volume 2020. https://doi.org/10.1155/2020/1479460
  15. Guide, E.U.S. 2008. ENVI on-line software user’s ITT Visual Information Solutions, 2008.
  16. Garcia-oliva, F., Lancho, J.F.G. and Montano, N.M. 2006. Soil carbon and nitrogen dynamics followed by a forest-topasture conversion in western Mexico. Agroforesty Systems 66: 93-100.
  17. Goldblatt, R., You, W., Hanson, G. and Khandelwal, A.K. 2016. Detecting the boundaries of urban areas in india: A dataset for pixel-based image classification in google earth engine. Remote Sensing, 8(8): 634. doi:https:// doi.org/10.3390/rs8080634
  18. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27, https://code.earthengine.google.com
  19. Greifeneder, F., Notarnicola, C. and Wagner, W. 2021. A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine. Remote Sens. 2021, 13, 2099. https://doi.org/ 10.3390/rs13112099
  20. Hormozgan Management and Planning Organization Land planning, supervision and planning affairs, 2019.
  21. Hormozgan Agricultural Jihad Office, 2021
  22. Https://earthengine.google.com
  23. Khosravi, R., Hassanzadeh, R., Hossinjanizadeh, M. and Mohammadi, S. 2020. Investigating Water Body Changes Using Remote Sensing Water Indices and Google Earth Engine: Case Study of Poldokhtar Wetlands, Lorestan Province. Volume 7, Issue 1, spring 2020, Pages 131-146
  24. Kumar, L. and Mutanga, O. 2018. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1509.
  25. Kempen, B., Brus, D.J., Heuvelink, G.B.M. and Stoorvoge, J.J. 2009. Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma 151: 311-326
  26. Lieb, M., Glaser, B. and Huwe, B. 2012. Uncertainty in the spatial prediction of soil texture: comparison of regression tree and random forest models. Geoderma 170(4), 70-79
  27. Liu, C., Shao, Z., Chen, M. and Luo, H. 2013. MNDISI: a multi-source composition index for impervious surface area estimation at the individual city scale. Remote Sensing Letters, 4(8): 803-812. doi:https://doi.org/ 10.1080/2150704X.2013.79871 0
  28. Makabe, S., Kakuda, Ki., Sasaki Y., Ando, T., Fujii, H. and Ando, H. 2009. Relationship between mineral composition or soil texture and available silicon in alluvial paddy soils on the Shounai Plain, Japan. Soil Science & Plant Nutrition 55(5), (300-308)
  29. Martinez-Mena, M., Lopez, J., Almagro, M., Boix-Fayos, V. and Albaladejo, J. 2008. Effect of tock in a Semiarid Area of South- East Spain. Soil and Tillage Research 99: 119-129.
  30. Minasny, B. and Hartemink, A.E. 2011. Predicting soil properties in the tropics. Earth-Science Reviews 106(1-2),52-62.
  31. Moges, A., Dagnachew, M. and Yimer, F. 2013. Land Use Effects on Soil Quality Indicators: A Case Study of Abo-Wonsho Southern Ethiopia. Applied and Environmental Soil Science, V (2013), 9 p.http:// dx.doi.org /10.1155/2013/784989
  32. Mokhtari, M. and Najafi, A. 2015. Comparison of support vector machine and neural network classification methods in land use information extraction through Landsat TM data. Journal of Science and Technology of Agriculture and Natural Resources, 19 (72): 35-45.doi:https://doi.org/10.1080 /0143116982 16062. (In Persian)
  33. Qin, J., Yang, K., Lu, N., Chen, Y., Zhao, L. and Han, M. 2013.Spatial upscaling of in-situ soil moisture measurements based on MODIS derived apparent thermal inertia. Remote Sens. Environ. 2013, 138, 1–9. [CrossRef]
  34. Riahi, M.R., Vahabzadeh, G. and Raei, R. 2016. The Role of Land Use Change on Some Soil Physicochemical Properties (Case Study: Watershed Basin of Keyasar Galooga). Volume 26, 1-1 - NO 2, P 159-171
  35. Rawat, J.S. and Kumar, M. 2015. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science. 2015; 18:77–84
  36. Seyum, S., Taddese, G. and Mebrate, T. 2019. Land use land cover changes on soil carbon stock in the Weshem Watershed, Ethiopia. Forest Res Eng Int J. 2019; 3(1):24‒30. DOI: 10.15406 /freij. 2019 .03 .00074
  37. Soltani, N. and Mohammad nezhad, V. 2021. Efficiency of Google Earth Engine (GEE) system in land use change assessment and predicting it using CA-Markov model (Case study of Urmia plain). Articles in Press, Available Online, January 2021
  38. Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. and Skakun, S. 2017. Exploring Google earth engine platform for big data processing: Classification of multi-temporal satellite imagery for crop Frontiers in Earth Science, 5, 17
  39. Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. and Skakun, S. 2017. Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science, 5(7): 1-17. doi:https://doi.org/10.3389/ feart.2017.00017
  40. Sun, Z., Xu, R., Du, W., Wang, L., Lu, D. 2019. Highresolution urban land mapping in China from sentinel 1A/2 imagery based on Google Earth Engine. Remote Sensing, 11(7): 752. doi:https://doi.org/10.3390 /rs 11070752
  41. Warrington, D., Mamedov, A., Bhardwaj, A. and Levy, G. 2009. Primary particle size distribution of eroded material affected by degree of aggregate slaking and seal development. Eur. J. Soil Sci 60, 84-93
  42. Wang, Z.R., Yang, G.J., Chen, S.Y., Wu, Z., Guan, J.Y., Zhao, C.C., Zhao, Q.D. and Ye, B.S. 2012. Effects of environmental factors on the distribution of plant communities in a semi-arid region of the Qinghai-Tibet Plateau. Ecol. Res. 2012, 27, 667–675. [CrossRef]
  43. Wang, Z., Gang, C., Li, X., Chen, Y. and Li, J. 2015. Application of a normalized difference impervious index (NDII) to extract urban impervious surface features based on Landsat TM images. International Journal of Remote Sensing, 36(4): 1055-1069. doi:https://doi.org/10.1080/01431161 .2015.100725 0.
  44. Wu, M., Zhao, X., Sun, Z. and Guo, H. 2019. A hierarchical multiscale super-pixel-based classification method for extracting urban impervious surface using deep residual network from worldview-2 and LiDAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(1): 210-222. doi:https://doi.org/ 10.1109/ JSTARS.2018.288628.
  45. Xu, H. 2010. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI). Photogrammetric Engineering & Remote Sensing, 76(5): 557-565.doi:https://doi.org/10.14358/PERS.76.5 .557.
  46. Xiao, W., Chen, W., He, T., Ruan, L. and Guo, J., 2020. "Multi-Temporal Mapping of Soil Total Nitrogen Using Google Earth Engine across the Shandong Province of China", Sustainability, MDPI, vol. 12(24), pages1-20.https://ideas.repec.org/a/gam /jsusta /v12y2020i24p10274-d459089.
  47. Zare, S., Jafari, M., Tavili, A. and Abbasi, H., 2011. Rostampour, M. Relationship between environmental factors and plant distribution in arid and semiarid area (case study: Shahriyar rangelands, Iran). Eurasian J. Agric. Environ. Sci. 2011, 10, 97–105.