ارزیابی کارایی روش‌های مختلف پارامترسازی همرفت در برآورد بارش فصلی و سالانۀ شمال‌ شرق کشور در مدل اقلیمی RegCM4

نویسندگان

1 دانشگاه هرمزگان

2 پژوهشکده اقلیم شناسی، سازمان هواشناسی کشور، مشهد.

3 دانشگاه تهران

چکیده

همرفت به مثابۀ یکی از فرایندهای جوی که دارای تأثیرات کوتاه‌مدت و بلندمدت بر سامانه‌های جوی و اقلیمی است، به‌طور فراوان مورد مطالعه قرار گرفته است. در این تحقیق، روش‌های مختلف پارامترسازی همرفت در میدان بارش با نسخۀ چهارم مدل دینامیکی اقلیم منطقه‌ای (RegCM4) ارزیابی می‌شود. مدل‌سازی برای سال 2004 ابتدا در دامنۀ مادر با تفکیک افقی 60×60 کیلومتر اجرا شد و سپس منطقۀ مورد مطالعه یعنی شمال‌ شرق کشور، با دقت مکانی 20×20 کیلومتر داخل دامنۀ مادر آشیانه‌گزینی گردید. مدل 4 بار با شرایط مرزی یکسان ولی هر بار با استفاده از یکی از طرح‌واره‌های گرل آراکاوا شوبرت (AS)، گرل فریچ-چپل (FC)، کو و امانوئل برای دامنۀ مادر اجرا شده سپس دامنۀ دوم داخل دامنۀ مادر آشیانه‌گزینی شد. پس از اجرای مدل نتایج با داده‌های مشاهداتی بارش آفرودیت مقایسه شد و معیارهای آماری مجذور مربع خطای میانگین، اریبی، همبستگی، میانگین خطای مطلق و اختلاف مقدار بارش سالانه و فصلی محاسباتی و مشاهداتی محاسبه گردید. با توجه به نتایج معیارهای آماری، بهترین طرح‌واره برای منطقۀ مورد نظر طرح‌وارۀ گرل آراکاوا-شوبرت است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluate the efficiency of different convective parameterization methods for estimating seasonal and annual precipitation in North East of Iran in climate model (RegCM)

نویسندگان [English]

  • Somayeh Mashari Eshghabad 1
  • Iman Babaiean 2
  • Ahmad Nohegar 3
  • Cyrus Ershadi 1
1
2
3
چکیده [English]

Convection as a short-term and long-term atmospheric processes that affect the climate and weather system, has been much studied. In this study, different types of parameterizing convection in precipitation field will be assessed in fourth version of the dynamic model of regional climate (RegCM4). The simulations are conducted for 2004 with 60*60 km grid spacing in mother domain, then the North East region of Iran was nested in mother domain with 20*20 km grid spacing. RegCM4 was run four times, keeping all the components of the model and the initial and boundary conditions the same, by each time coupling one the convection schemes (Kou, Grell Arakawa-Schubert, Grell Fritch-Chappell, Emanuel) with the model, then the results were nested. After running the model, results were compared with Aphrodite precipitation data and the statistical criteria, including Root Mean Square Error, Bias, Correlation, Mean Absolut Error and Differences in annual and seasonal observed and simulated precipitation were calculated. According to statistical criteria, the best scheme for this area is Grell Arakawa-Schubert scheme.

کلیدواژه‌ها [English]

  • Convection scheme
  • Dynamic climate modeling
  • Nesting
  • Precipitation
  • Regional climate model
1. Anthes, R. A., 1977. A Cumulus Parameterization Scheme Utilizing a One-Dimensional Cloud Model. Monthly Weather Review 105: 270–86. 2. Babaeian, I., Karimian, M., Modirian, R., Habibi Nokhandan, M., 2008. Simulating the rainfall of cold months in 1376 to 1379 using climate model RegCM3. Geography and Development Iranian Journal. 10: 55-72. 3. Bao, Y., 2013. Simulations of Summer Monsoon Climate over East Asia with a Regional Climate Model (RegCM) Using Tiedtke Convective Parameterization Scheme (CPS). Atmospheric Research 134: 35–44. 4. Betts, A. K. 1986. A New Convective Adjustment Scheme. Part I: Observational and Theoretical Basis. Quarterly Journal of the Royal Meteorological Society 112(473): 677–91. 5. Dash, S. K., Shekhar, M. S., Singh, G. P., 2006. Simulation of Indian Summer Monsoon Circulation and Rainfall Using RegCM3. Theoretical and applied climatology. 86: 161-172. 6. Dickinson, R. E., Errico, R. M., Giorgi, F., Bates, G. T., 1989. A Regional Climate Model for the Western United States. Climatic Change 15(3): 383-422. 7. Giorgi, F., Marinucci, M. R., 1991. Validation of a Regional Atmospheric Model over Europe: Sensitivity of Wintertime and Summertime Simulations to Selected Physics Parametrizations and Lower Boundary Conditions. Quarterly Journal of the Royal Meteorological Society 117(502): 1171–1206. 8. Giorgi, F., Marinucci, M. R., Bates, G. T., 1993a. Development of a Second-Generation Regional Climate Model (RegCM2). Part I: Boundary-Layer and Radiative Transfer Processes. Monthly Weather Review 121(10): 2794–2813. 9. Giorgi, F., Marinucci, M. R., Bates, G. T., De Canio, G., 1993b. Development of a Second-Generation Regional Climate Model (RegCM2). Part II: Convective Processes and Assimilation of Lateral Boundary Conditions. Monthly Weather Review 121(10): 2814–32. 10. Giorgi, F., Mearns, L. O., 1999. Introduction to Special Section: Regional Climate Modeling Revisited. Journal of Geophysical Research: Atmospheres 104: 6335–52. 11. Gochis, D. J., Shuttleworth, W. J., Yang, Z. L., 2002. Sensitivity of the Modeled North American Monsoon Regional Climate to Convective Parameterization. Monthly Weather Review 130(5): 1282–1298. 12. GRELL, G. A. 1995. A Description of the Fifth-Generation Penn State/ NCAR Mesoscale Model (MM5), NCAR/TN-398+STR. NCAR TECHNICAL NOTE. 121pp. Available at: http://ci.nii.ac.jp/naid/10016459788/en/. 13. Grell, GA. 1993. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Monthly Weather Review 121: 764-787. 14. Holtslag, A. A. M., De Bruijn, E. I. F., Pan. H-L., 1990. A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting. Monthly Weather Review 118(8): 1561–75. 15. Hsie, E. Y., Anthes, R. A., Keyser, D., 1984. Numerical Simulation of Frontogenesis in a Moist Atmosphere. Journal of the Atmospheric Sciences 41(17): 2581–94. 16. Im, E. S., Ahn, J. B., Remedioc, A. R., Kwon, W. T., 2008. Sensitivity of the Regional Climate of East/Southeast Asia to Convective Parameterizations in the RegCM3 Modelling System. Part 1: Focus on the Korean Peninsula. Encyclopedia of Atmospheric Sciences 28: 1861–77. 17. Irannejad, P., Ahmadi-Givi, F., Pazouki, R., 2009. The role of convection parameterization in the simulation of the winter temperature and precipitation fields over Iran using Regional Climate Model (RegCM3). Journal of Earth and Space Physics 35(1): 101-120. 18. Kang, H. S., Hong, Y. H., 2008. Sensitivity of the Simulated East Asian Summer Monsoon Climatology to Four Convective Parameterization Schemes. Journal of Geophysical Research Atmospheres 113(15): 1–17. 19. Karimian, M., Babaeian, I., Modirian, R., 2008. Evaluation the capability of climate model RegCM3 in modeling precipitation and temprature in Khorasan Province, case studey: winter of 1991 to 2000. Geographical Research 97: 167-186. 20. Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Briegleb, B. P., 1996. Description of the NCAR Community Climate Model (CCM3). Technical Note. Avalable at: http://www.osti.gov/scitech/biblio/442361 21. Krishnamurti, T. N., Sanjay, J., 2003. A New Approach to the Cumulus Parameterization Issue. Tellus, Series A: Dynamic Meteorology and Oceanography 55(4): 257–300. 22. Modirian, R., Babaeian, I., Karimian, M., 2010. Configuretion the RegCM model to simulate the temperature and precipitation in autumn in Khorasan region from 1991 to 2000. Physical Geography Research Quarterly 70: 107-120. 23. Mofidi, A., Kamali, S., Zarrin, A., 2013. Evaluation of the RegCM4 model coupled with Dust module on identification of dust storm features over the Sistan region. Quarterly of Geography (Regional Planning) 3: 51-70. 24. Pal, J. S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Rauscher, S. A., Gao, X., Francisco, R., Zakey, A., Winter, J., Ashfaq, M., Syed, F. S., Sloan, L. C., Bell, J. L., Diffenbaugh, N. S., Karmacharya, J., Konaré, A., Martinez, D., da Rocha, R. P., Steiner, A. L., 2007. Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET.” Bulletin of the American Meteorological Society 88(9): 1395–1409. 25. Tiedtke, M. 1989. A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Mon. Weather Rev. 117(8): 1179–1800. 26. Wang, Y., Zhou, L., Hamilton, K., 2007. Effect of Convective Entrainment/Detrainment on the Simulation of the Tropical Precipitation Diurnal Cycle. Monthly Weather Review 135(2): 567–85. 27. Wilks, D. S., 2011. Statistical Methods in the Atmospheric Sciences. Academic Press is an imprint of Elsevier. San Diego, USA. 704p. 28. Yaghoubi, F. and A.R. Bahremand. 2011. Streamflow Simulation using Spatially Distributed Hydrologic Model, WetSpa in Chehel-Chai Watershed in Golestan Province. Journal of Water and Soil Conservation, Vol. 18(3): 185-205.