تأثیر باکتری‌های محرک رشد گیاه بر خصوصیات فیزیولوژیک، محتوای یونی و عملکرد گیاه کاملینا تحت تنش‌های خشکی و گردوغبار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت بیابان، دانشکده منابع طبیعی، دانشگاه یزد

2 گروه محیط زیست، دانشکده منابع طبیعی دانشگاه یزد

3 گروه علوم خاک، دانشگاه تهران

4 گروه مهندسی طبیعت، دانشگاه کاشان

‎10.22052/deej.2025.257644.1120

چکیده

گردوغبار و تنش خشکی در مناطق خشک به‌عنوان رخدادهایی که وقوع آن‌ها به‌طور هم‌زمان اتفاق می‌افتد، تأثیر مخربی بر اکوسیستم‌های زراعی دارند. این مطالعه به بررسی تأثیر دو باکتری محرک رشد گیاه B.amyloliquefaciens وB. halotolerans بر صفات فیزیولوژیکی، بیوشیمیایی و عملکردی گیاه کاملینا (Camelina sativa) تحت تنش‌ خشکی و گردوغبار می‌پردازد. آزمایش فاکتوریل در قالب طرح بلوک‌ کامل تصادفی با تیمارهای مختلف شامل تلقیح انفرادی و ترکیبی دو باکتری، آبیاری در سه سطح دورۀ آبیاری (4، 6 و 8 روز یک بار) و گردوغبار در دو سطح اجرا شد. نتایج نشان داد که تأثیر هم‌زمان خشکی و گردوغبار بر روی کاملینا مخرب‌تر از تأثیر هرکدام به‌تنهایی است. در این میان، گردوغبار تأثیر منفی کمتری نسبت به خشکی بر گیاه کاملینا داشت. تأثیر هم‌زمان کم آبیاری و گردوغبار موجب کاهش جذب عناصر معدنی نیتروژن و فسفر، کلروفیل b، وزن بذر در هر پایه و وزن خشک ریشه و اندام هوایی و افزایش کلسیم، قندهای محلول و کاروتنوئید شد. درحالی‌که خشکی به‌تنهایی موجب کاهش وزن بذر و افزایش فنل شد، گردوغبار تغییری در مقدار آن‌ها ایجاد نکرد در مقابل گردوغبار مقدار کلروفیل b را افزایش داد. تلقیح باکتریایی (هر باکتری به‌تنهایی یا ترکیب باهم) در اغلب موارد موجب بهبود شرایط فیزیولوژیکی و عملکردی کاملینا شد. در این میان، B. halotolerans عملکرد بهتری نسبت به B. amyloliquefaciens و ترکیب دو باکتری در اغلب صفات اندازه‌گیری‌شده داشت. یافته‌های این تحقیق بر اهمیت استفاده از ترکیب هم‌زمان باکتری‌های محرک رشد گیاه به‌عنوان راهکاری زیستی پایدار برای بهبود رشد گیاهانی که اغلب با چندین تنش روبه‌رو هستند تأکید دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Plant Growth-Promoting Bacteria on Physiological Traits, Ion Homeostasis, and Yield of Camelina sativa Under Combined Drought and Dust Stress

نویسندگان [English]

  • hamid golaraei 1
  • Asghar Mosleh Arani 2
  • Hassan Etesami 3
  • Reza Dehghani Bidgoli 4
1 Department of Arid Land and Desert Management. Faculty of Natural Resources and Desert Studies, Yazd University, Yazd, Iran.
2 Department of Environmental Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran
3 Department of Soil Science, University of Tehran, Karaj, Iran
4 Department of Nature Engineering University of Kashan, Iran
چکیده [English]

Introduction: Environmental stresses, particularly drought and dust, pose significant constraints to agricultural productivity, especially in arid and semi-arid regions. Camelina sativa, an oilseed crop valued for its nutritional and industrial applications, exhibits sensitivity to these abiotic stressors, which can adversely affect its physiological, biochemical, and morphological processes. This study aimed to evaluate the effects of inoculating C. sativa with plant growth-promoting bacteria (PGPB)—Bacillus amyloliquefaciens and Bacillus halotolerans, applied individually and as a 1:1 consortium—on the plant’s physiological and biochemical responses, as well as its overall growth performance, under combined drought and dust stress conditions.Materials and Methods: The bacterial strains were procured from the Regional Collection Center for Industrial Fungi and Bacteria of Iran. Four inoculation treatments were prepared at a final concentration of 3×10⁸ CFU mL⁻¹: a non-inoculated control, B. amyloliquefaciens alone, B. halotolerans alone, and a 1:1 mixture of both strains. Healthy Camelina seeds were bacterized via immersion in the respective suspensions for two hours prior to sowing. Seeds were planted at a density of 40 seeds per square meter in plots arranged in a completely randomized design. Plants were subjected to three irrigation regimes: 4-day intervals (well-watered control), 6-day intervals (moderate drought), and 8-day intervals (severe drought). Simultaneously, dust stress was applied using particulates (<10 µm) collected from identified critical emission sources in Aran and Bidgol, Isfahan Province, simulating natural deposition rates ranging from 0.57 to 1.13 g m⁻² day⁻¹. Leaf samples were collected prior to seed maturity for biochemical analyses, including the quantification of chlorophyll *a*, *b*, and total chlorophyll; carotenoids; ascorbic acid; total phenolic content; proline; soluble sugars; and essential nutrients (N, P, K, Ca). Growth and yield parameters, such as dry biomass, seed yield, and root dry weight, were also measured. All data were subjected to analysis of variance (ANOVA) using SPSS software, and means were compared using Duncan’s multiple range test at a 5% probability level (α = 0.05).
 
Results: Drought and dust stress significantly altered nutrient content and biochemical parameters in C. sativa. Nitrogen content declined under both stresses, indicating impaired uptake likely due to reduced transpiration, disrupted membrane integrity, and suppressed nitrate reductase activity under dust exposure. Inoculation with plant growth-promoting bacteria (PGPB) significantly increased nitrogen content under stress, attributable to biological nitrogen fixation and enhanced protein synthesis, consistent with prior studies on PGPR-mediated stress alleviation. Calcium concentration decreased under drought but was elevated by bacterial inoculation, suggesting a role in reinforcing cell wall stability and stress-signaling pathways. Phosphorus content was also reduced under drought and dust stress; however, PGPB inoculation—particularly with B. amyloliquefaciens and B. halotolerans—increased phosphorus availability through phosphate solubilization, organic acid production, and enzymatic mineralization. Potassium levels were primarily reduced by dust stress, and bacterial inoculation, especially with B. amyloliquefaciens, enhanced potassium uptake, likely through improved ion homeostasis and exopolysaccharide-mediated sodium sequestration. Proline and phenolic compounds accumulated significantly under drought and dust stress, functioning as osmoprotectants and antioxidants. Bacterial inoculation reduced stress-induced proline accumulation, indicating improved water status, hormonal modulation (IAA, cytokinins, gibberellins), and enhanced root development. Soluble sugars decreased under stress, particularly under combined drought and dust conditions, due to stomatal closure and reduced photosynthetic efficiency. However, PGPB inoculation—notably with B. halotolerans—increased soluble sugar content, reflecting better osmotic adjustment and sustained metabolic activity. Chlorophyll *b* and carotenoids were sensitive to stress, showing marked reductions under drought and dust. Bacterial treatments increased chlorophyll content while lowering carotenoid accumulation, suggesting reduced oxidative stress through improved nutrient uptake and induced antioxidant activity.
Morphological traits, including shoot dry weight, root dry weight, and seed yield, were adversely affected by drought and dust stress. Inoculation with B. halotolerans significantly improved seed weight and shoot biomass, whereas B. amyloliquefaciens primarily enhanced root dry weight. These improvements can be linked to better nutrient acquisition, phytohormonal stimulation, and maintenance of photosynthetic pigments under stress. The combined bacterial inoculation demonstrated synergistic effects, promoting overall plant resilience and yield stability under adverse conditions.
 
Discussion and Conclusion: This study demonstrates that concurrent drought and dust stress disrupt key physiological and biochemical processes in C. sativa, leading to reduced soluble sugars, nitrogen, phosphorus, and chlorophyll *b*, alongside increased proline, phenolics, calcium, potassium, and carotenoids. Dust stress was observed to intensify the effects of drought on several measured parameters.
Inoculation with B. amyloliquefaciens and B. halotolerans—both individually and in combination—effectively mitigated these adverse effects. The bacterial treatments enhanced nutrient uptake, regulated osmolyte accumulation, boosted antioxidant capacity, and stimulated growth-promoting hormonal activity, collectively improving physiological performance and seed yield under stress conditions.
These findings underscore the potential of plant growth-promoting bacteria (PGPB) as a sustainable and eco-friendly strategy for enhancing crop resilience in arid and semi-arid regions. The results further emphasize the importance of selecting specific bacterial strains based on prevailing environmental conditions and stress types to optimize plant productivity and stress adaptation.

کلیدواژه‌ها [English]

  • Plant Growth-Promoting Bacteria
  • Drought
  • Dust
  • Ascorbic Acid
  • Camelina
  1. Ahmed, Z., E.A. Waraich, R. Ahmad, & M. Shahbaz, 2017. Morpho-physiological and biochemical responses of camelina (Camelina sativa crantz) genotypes under drought stress. J. Agric. Biol., 19, 1‒7.
  2. Alberghini, B., Vicino, M., Zanetti, F., Silvestre, S., Haslam, R., Zegada-Lizarazu, W., & Monti, A. (2025). Assessing different physiological, seed yield and quality responses of camelina lines to drought. Industrial Crops and Products, 234, 121528. https://doi.org/10.1016/j.indcrop.2024.121.
  3. ALKahtani, M. D. F., Attia, K. A., Hafez, Y. M., Khan, N., Eid, A. M., Ali, M. A. M., & Abdelaal, K. A. A. (2020). Fluorescence Parameters and Antioxidant Defense System Can Display Salt Tolerance of Salt Acclimated Sweet Pepper Plants Treated with Chitosan and Plant Growth Promoting. Rhizobacteria. Agronomy, 10(8), 1180. doi: 10.3390/agronomy10081180.
  4. Amini Hajiabadi, A., Mosleh Arani, A., Ghasemi, S., Rad, M.H., Etesami, H., Shabazi Manshadi, S. & Dolati, A. (2021). Mining the rhizosphere of halophytic rangeland plants for halotolerant bacteria to improve growth and yield of salinity-stressed wheat. Plant Physiology and Biochemistry, 163, 139-153.
  5. Arshad, M. N., Donnison, I., & Rowe, R. (2021). Marginal lands: Concept, classification criteria and management. Supergen Bioenergy Hub. https://www.researchgate.net/publication/359847464
  6. Attia, Z., Pogoda, C. S., Reinert, S., Kane, N. C., & Hulke, B. S. (2021). Breeding for sustainable oilseed crop yield and quality in a changing climate. Theoretical and Applied Genetics, 134(5), 1817–1827. https://doi.org/10.1007/s00122-021-03770-w.
  7. Azarmi-Atajan., F. & Sayyari-Zohan, M. H. (2020). Alleviation of salt stress in lettuce (Lactuca sativa ) by plant growth-promoting rhizobacteria. Journal of horticulture and postharvest research, 3, 67-78.
  8. Azarmi, F., Mozafari, V., Abbaszadeh Dahaji, P. & Hamidpour, M. (2016). Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiologiae Plantarum, 38(1), 21.
  9. Baek, D., Rokibuzzaman, M., Khan, A., Kim, M.C., Park, H.J., Yun, D.j. & Chung, Y.R. (2020). Plant-Growth Promoting Bacillus oryzicola YC7007 Modulates Stress-Response Gene Expression and Provides Protection from Salt Stress. Frontiers in Plant Science, 10, 1646.
  10. Berti, M., Gesch, R., Eynck, C., Anderson, J., & Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94, 690–710. https://doi.org/10.1016/j.indcrop.2016.09.034.
  11. Bimal, C. S., & Karmoker, J. L. (2011). Effects of phosphorus deficiency on accumulation of biochemical compounds in lentil. Bangladesh Journal of Botany, 40(1), 23-27. doi:3329/bjb.v40i1.7992.
  12. Borzoo, S., Mohsenzadeh, S., Moradshahi, A. et al. Characterization of physiological responses and fatty acid compositions of Camelina sativa genotypes under water deficit stress and symbiosis with Micrococcus yunnanensis. Symbiosis, 83, 79–90 (2021). https://doi.org/10.1007/s13199-020-00733-5.
  13. Cheng, Z., Park, E. & Glick, B. R. (2007). 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Canadian Journal of Microbiology, 53(7), 912-8.
  14. Dirk, I. & Montago, M.V. (2002). Oxidative Stress in Plants. Taylor & Fransis.
  15. Dominguez, J.A., Delgado-Alvez, D., Berrocal-Lobo, M., Anriquez, A. & Albanesi, A. (2015). Controlled-release fertilizers combined with Pseudomonas fluorescens rhizobacteria inoculum improve growth in Pinus halepensis seedlings. IForest Journal, 8(1), 12-18.
  16. Dvorak, P., Krasylenko, Y., Zeiner, A., Samaj, J. and Takac, T. 2021. Signaling towards reactive oxygen species-scavenging enzymes in lants. Front Plant Sci 11:618835.
  17. Etesami, H., & Glick, B. R. (2020). Plant Growth-Promoting Rhizobacteria (PGPR) and Their Environmental Applications: A Review. Applied Soil Ecology, 156, 103701. https://doi.org/10.1016/j.apsoil.2020.103701.
  18. Etesami, H., Emami, S. & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects: A review. Soil Science and Plant Nutrition, 17(4), 897-911.
  19. Frydenvang, J., Van Maarschalkerweerd, M., Carstensen, A., Mundus, S., Birkelund Schmidt, S., Pedas, P. R., Holst Laursen, K., Schjoerring, J. K. & Husted, S. (2015). Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence. Plant Physiology, 169(1), 353–361.
  20. Ghaffari, H., Tadayon, M.R., Nadeem, M., Cheema, M. and Razmjoo, J. 2019. Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiol. Plant, 41, 23.
  21. Han, L., Hu, L., Lv, Y., Li, Y., Ma, Z., Li, B., ... & Zhao, X. (2024). Effects of B. amyloliquefaciens QST713 on mineral nutrient utilization of Alfalfa (Medicago sativa L.) under drought stress. Agronomy, 14(8), 1793.
  22. Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79(4), 597–606. https://doi.org/10.1111/tpj.12556.
  23. Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., & Garnczarska, M. 2022. Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review. Int J Mol Sci. 6; 23(9), 5186. doi: 10.3390/ijms23095186. PMID: 35563577; PMCID: PMC9101538.
  24. Hussain, M. I., Lyra, D. A., Farooq, M., Nikoloudakis, N., & Khalid, N. (2016). Salt and drought stresses in safflower: a review. Agronomy for sustainable development, 36(1), 4.
  25. Ilyas, Muhammad & Nisar, M & Khan, Nadeem & Hazrat, Ali & Khan, Aamir & Hayat, Kashif & Sh, F. & Khan, Aziz & Ullah, Abid. (2021). Drought Tolerance Strategies in Plants: A Mechanistic Approach. Journal of Plant Growth Regulation. 40. 10.1007/s00344-020-10174-5
  26. Khan, A. N., Qurashi, R. H., Ahmad, N. & Rashid, A. (1995). Response of cotton cultivars to salinity at various growth development stages. Journal of Agricultural, 11,729-31.
  27. Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S. & Verma, J. P. (2020). Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Frontiers in Microbiology, 11, 1216.
  28. Liu, K., Deng, F., Zeng, F., & Qin, Y. (2025). Rhizobacterial enhancement of drought tolerance in safflower (Carthamus tinctorius L.): current status and perspectives. Plant Growth Regulation, 105, 567–581.
  29. Meravi, N., Singh, P. K. & Prajapati, S. K. (2021). Seasonal variation of dust deposition on plant leaves and its impact on various photochemical yields of plants. Environmental Challenges, 4, 1-6.
  30. Motlagh, P., Seyedeh Mahbubeh, B. Seyedeh Mahbubeh, M., Fateminick, F., & Mahmoudi, M. (2021). Evaluation of drought stress on unsaturated fatty acids and some physiological traits of four safflower (Carthamus tinctorius L.) cultivars in Jiroft. Environmental Stresses in Crop Sciences, 14, 3, 619-627, doi =10.22077/escs.2020.3179.1812.
  31. Najafi Zilaie, M., Mosleh Arani, A., & Etesami, H. 2023a.Evaluation of air pollution (dust) tolerance index of three desert species Seidlitzia rosmarinus, Haloxylon aphyllum, and Nitraria schoberi under salinity stress. Environment Monitoring and Assessment, 195, 838.
  32. Najafi Zilaie, M., Mosleh Arani, A., & Etesami, H. 2023b. The importance of plant growth-promoting rhizobacteria to increase air pollution tolerance index (APTI) in the plants of green belt to control dust hazards. Frontiers in Plant Science, 14, 1098368.
  33. Najafi Zilaie, M., Mosleh Arani, A., Etesami, H., & Dinarvand, M. 2022a. Halotolerant rhizobacteria enhance the tolerance of the desert halophyte Nitraria schoberi to salinity and dust pollution by improving its physiological and nutritional status. Applied Soil Ecology, 179, 104578.
  34. Najafi Zilaie, M., Mosleh Arani, A., Etesami, H., & Dinarvand, M. 2022b. Improved salinity and dust stress tolerance in the desert halophyte Haloxylon aphyllum by halotolerant plant growth-promoting rhizobacteria. Frontiers in Plant Science, 13, 948260.
  35. Najib, R., Houri, T., Khairallah, Y., & Khalil, M. 2022. Effect of dust accumulation on Quercus cerris leaves in the Ezer forest, Lebanon. iForest 15: 322-330. doi: 10.3832/ifor3959-015. Ngalimat, M. S., Yahaya, R. S. R., Baharudin, M. M. A. A., Yaminudin, S. M., Karim, M., Ahmad, S. A., & Sabri, S. (2021). A review on the biotechnological applications of the operational group B. amyloliquefaciens. Microorganisms, 9(3), 614.
  36. Nazim, M., Ali, M., Li, X., Anjum, S., Ahmad, F., Zulfiqar, U., Shahzad, K., & Soufan, W. (2023). Unraveling the synergistic effects of microbes and selenium in alleviating drought stress in Camelina sativa L. Plant Stress, 9, 100193.
  37. Ngalimat, M. S., Yahaya, R. S. R., Baharudin, M. M. A. A., Yaminudin, S. M., Karim, M., Ahmad, S. A., & Sabri, S. (2021). A review on the biotechnological applications of the operational group B. amyloliquefaciens. Microorganisms, 9(3), 614.
  38. Nguyen, H. T., Ryu, C. M., & Oh, Y. (2021). The role of Bacillus spp. in drought stress tolerance in plants. Plant and Soil, 468, 1–16.
  39. Pan, J., Peng, F., Xue, X., You, Q., Zhang, W., Wang, T. & Huang, C. (2019). The Growth Promotion of Two Salt-Tolerant Plant Groups with PGPR Inoculation: A Meta-Analysis. Sustainability, 11(1), 1-14.
  40. Pan, X., Smith, J., & Zhang, Y. (2011). Photosynthetic and growth responses of Camelina sativa (L.) Crantz to varying nitrogen and soil water status. Photosynthetica, 49(3), 316–320.
  41. Piravi-vanak, Z., Azadmard-Damirchi, S., Kahrizi, D., Mooraki, N., Ercisli, S., Savage, G. P., Ahmadvandi, H. R., & Martinez, F. (2022). Physicochemical properties of oil extracted from camelina (Camelina sativa) seeds as a new source of vegetable oil in different regions of Iran. Journal of Molecular Liquids, 345, 117043.
  42. Radhakrishnan, R., Hashem, A. & Abd-Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology, 6(8), 667.
  43. Ranjbar Fordoeil, Abolfazl and Heydarnezhad, Somayeh. (2018). Impact of Aeolian dust accumulation on some biochemical parameters of cow-tail shrubs (Smirnovia iranica) leaves in the desert regions of Kashan, Iran, Second International Dust International Conference, Ilam,https://civilica.com/doc/
  44. Santoyo, G., Sánchez-Yáñez, J.M. & Santos-Villalobos, S.D.L. (2019). Methods for Detecting Biocontrol and Plant Growth-Promoting Traits in Rhizobacteria. In Microbes and Signaling Biomolecules against Plant Stress; Springer: Singapore, pp. 133–149.
  45. Shah, S.H., Hussain, M.B., Zahir, Z.A. et al. Thermal Plasticity and Cotton Production Enhancing Attributes of Phosphate-Solubilizing Bacteria from Cotton Rhizosphere. J Soil Sci Plant Nutr , 22, 3885–3900 (2022). https://doi.org/10.1007/s42729-022-00937-2
  46. Sharavdorj, K., Byambadorj, S.-O., Jang, Y., Ahn, Y., & Cho, J.-W. (2024). Evaluating the Effects of Long-Term Salinity Stress on the Growth and Physiology of Mono and Mixed Crops. Agronomy, 14, 287. https://doi.org/10.3390/agronomy14020287
  47. Sharifi Kalyani, F., Babaei, S., Zafarsohrabpour, Y., Nosratti, I., Gage, K., & Sadeghpour, A. (2024). Investigating the impacts of airborne dust on herbicide performance on Amaranthus retroflexus. Sci Rep.15; 14(1), 3785. doi: 10.1038/s41598-024-54134-5. PMID: 38360846; PMCID: PMC10869696.
  48. Sharma, B., Sharma, S., Bhardwaj, S.K., Kaur, L., & Sharma, A. (2017). Evaluation of Air Pollution Tolerance Index (APTI) as a tool to monitor pollution and green belt development: a review. Journal of Applied and Natural Science, 9, 1637- 1643. doi: 10.31018/jans. v9i3.1414.
  49. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012.
  50. Sheteiwy, Mohamed S., et al. (2021). Noculation with B. amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. Physiologia Plantarum4, 2153-2169.
  51. Shilev, S. (2020). Plant-Growth-Promoting Bacteria Mitigating Soil Salinity Stress in Plants. Applied Science, 10(20), 7326.
  52. Singh, R. P., & Jha, P. N. (2020). The PGPR Klebsiella sp. SBP-8 augments resistance against drought stress in wheat plants by modulating osmolytes, antioxidant machinery and expression of stress-responsive genes. Environmental and Experimental Botany, 171, 103946. https://doi.org/10.1016/j.envexpbot.2020.103946
  53. Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24.
  54. Wang, Q., Dodd, I. C., Belimov, A. A. & Jiang, F. (2016). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Functional Plant Biology, 43(2), 161-172.
  55. Wu, X., Fan, Y., Wang, R., Zhao, Q., Ali, Q., Wu, H., Gu, Q., Borriss, R., Xie, Y., & Gao, X. (2022). B. halotolerans KKD1induces physiological, metabolic and molecular reprogramming in wheat under saline condition Front. Plant Sci., 13, 978066 doi: 10.3389/fpls.2022.978066.
  56. Yari, A., Abbasi, N., & Hajinia, S. (2024). Investigating the morpho-physiological traits, yield and seed quality of three accessions of camelina under water stress conditions. Iranian Journal of Field Crop Science, 55(2), 89-104. DOI: 10.22059/ijfcs.2023.361897.655017
  57. Zhang, C., Zhang, J., Liu, W., Ji, J., Zhang, K., Li, H., Feng, Y., Xue, J., Ji, C., Zhang, L., & Li, R. (2025). Mechanisms of branched chain amino acids promoting growth and lipid accumulation in Camelina sativa seedlings under drought and salt stress. Sustainable Energy Technologies and Assessments, 75, 104201. https://doi.org/10.1016/j.seta.2025.104201
  58. Zhao, Wei-song, Qing-gang Guo, Wen-qian Yu, Pei-pei Wang, Zhen-he Su, Xiao-yun Zhang, Xiu-yun Lu, Ping Ma, & She-zeng Li. (2020). Phosphate-solubilizing characteristics of B. amyloliquefaciens PHODB35 and its growth-promoting effect on tomato: 1370-1383.