پیش‌بینی توزیع مکانی-زمانی بارش در حوضۀ ارومیه با استفاده از مدل هیبریدی EEMD-SVM-LSTM

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی طبیعت، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، ایران.

2 دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان

3 دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه،

‎10.22052/deej.2025.257075.1111

چکیده

پیش‌بینی دقیق بارش ماهانه برای مدیریت منابع آب و کاهش خطرات ناشی از نوسانات اقلیمی در مناطق نیمه‌خشک اهمیت ویژه‌ای دارد. هدف از این پژوهش، توسعه و ارزیابی یک مدل هیبریدی ترکیبی بر پایۀ تجزیۀ تجربی حالت تجمعی (EEMD)، ماشین بردار پشتیبان (SVM) و شبکۀ عصبی حافظۀ بلندمدت (LSTM) به‌منظور شبیه‌سازی و پیش‌بینی بارش ماهانه در حوضۀ آبریز دریاچۀ ارومیه است. در این راستا، داده‌های بارش ماهانۀ چهار ایستگاه خوی، سقز، تبریز و ارومیه طی دورۀ ۱۹۸۰ تا ۲۰۲۴ گردآوری و برای آموزش و اعتبارسنجی مدل استفاده شد؛ سپس بازۀ زمانی ۲۰۳۰ تا ۲۰۵۰ برای پیش‌بینی آینده بررسی گردید. نتایج نشان داد که مقدار RMSE در ایستگاه‌های مورد بررسی برای مدل SVM بین 07/0 تا 11/0 میلی‌متر و برای LSTM بین 10/0 تا 29/0 میلی‌متر متغیر بود. بالاترین میزان افزایش بارش سالانه در دورۀ آینده در ایستگاه خوی (82/18 درصد) مشاهده شد، درحالی‌که ایستگاه سقز با کاهش حدود 14 درصدی بارش مواجه شد. به‌طور میانگین، بارش سالانۀ کل حوضه در سناریوی آینده نسبت به دورۀ پایه حدود 4 درصد کاهش خواهد یافت. یافته‌ها نشان داد مدل هیبریدی EEMD-SVM-LSTM می‌تواند روندهای پیچیدۀ بارش را با دقت بالا شبیه‌سازی و پیش‌بینی کند و برای بهبود مدیریت منابع آب و برنامه‌ریزی سازگار با تغییرات اقلیمی در مناطق مشابه، رویکردی کارآمد محسوب می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatiotemporal Prediction of Precipitation Distribution in the Urmia Basin Using an EEMD-SVM-LSTM Hybrid Model

نویسندگان [English]

  • Behnoush Farokhzadeh 1
  • Rasool Imani 2
  • Sepideh Choobeh 3
1 , Natural Engineering Department, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
2 , Faculty of Natural Resources and Geoscience, Kashan University, Kashan
3 , Faculty of Natural Resources, Urmia University
چکیده [English]

Introduction: Accurate prediction of monthly rainfall is crucial for water resource management and risk mitigation in semi-arid regions, particularly under climate change. The Lake Urmia Basin in northwestern Iran has faced significant environmental degradation in recent decades, driven by climatic variability, unsustainable agriculture, and inadequate water management. Forecasting future rainfall patterns is therefore essential for developing adaptive strategies to restore ecological balance and ensure sustainable development. However, traditional statistical models often fail to capture the nonlinear and non-stationary characteristics of hydrological data. This limitation has prompted the exploration of advanced machine learning and deep learning techniques. Hybrid models that integrate signal decomposition with intelligent algorithms have shown superior performance in time series forecasting by improving feature extraction and reducing noise. This study introduces a novel hybrid framework that combines Ensemble Empirical Mode Decomposition (EEMD), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) networks to simulate and predict monthly rainfall in the Lake Urmia Basin. The proposed EEMD-SVM-LSTM model leverages the complementary strengths of each component to capture both short-term fluctuations and long-term trends, thereby significantly enhancing predictive accuracy.
 
Materials and Methods: Monthly rainfall data from four synoptic stations—Urmia, Khoy, Tabriz, and Saqez—were collected for the period 1980–2020 for model development and validation. Future projections were then generated for the 2030–2050 period under a business-as-usual scenario. The proposed methodology involved decomposing the original rainfall time series into several Intrinsic Mode Functions (IMFs) and a residual component using the Ensemble Empirical Mode Decomposition (EEMD) method. This decomposition facilitated a multi-resolution analysis by isolating distinct frequency components, thereby simplifying the modeling of complex, non-stationary rainfall dynamics.
The high-frequency IMFs, which represent short-term noise and rapid fluctuations, were modeled using a Support Vector Machine (SVM) algorithm, selected for its effectiveness with nonlinear relationships and limited data. Conversely, the low-frequency residual component, encapsulating the long-term trend, was predicted using a Long Short-Term Memory (LSTM) network, chosen for its ability to learn and retain long-term dependencies in sequential data. The final integrated prediction was obtained by summing the forecasted results from all SVM and LSTM components.
Model performance was quantitatively evaluated using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). To demonstrate the superiority of the hybrid approach, its predictive accuracy was benchmarked against standalone SVM and LSTM models.
 
Results: The EEMD process successfully decomposed the rainfall signals into distinct intrinsic mode functions, enabling a more targeted modeling approach. The hybrid EEMD-SVM-LSTM model demonstrated superior predictive performance compared to the standalone SVM and LSTM models. This was evidenced by consistently lower error metrics across all stations during both training and validation phases. The RMSE values for the hybrid model ranged from 0.07 to 0.11 mm, outperforming the standalone SVM (0.10–0.29 mm) and LSTM models.
Projections for the 2030–2050 period revealed spatially variable changes in rainfall across the basin. Khoy station exhibited the highest annual rainfall increase (+18.8%), whereas Saqez experienced the most significant decrease (–14.9%). At the basin level, the mean annual rainfall is projected to decline by approximately 4%, from 334.5 mm to 320.7 mm. Spatially, the analysis indicated a northward shift in precipitation concentration, with increases projected over Tabriz and Urmia, and decreases in the southern and western parts of the basin. Temporally, a shift toward a more uniform seasonal distribution was observed, characterized by a relative increase in winter and spring precipitation and a more pronounced decline in late-summer rainfall.
 
Discussion and Conclusion: This study demonstrates that the hybrid EEMD-SVM-LSTM framework effectively captures the multi-scale dynamics of rainfall by integrating signal decomposition with machine learning. The model's superior predictive accuracy over standalone ML and DL models underscores the value of a hybrid approach for processing complex, non-stationary hydrological data, a finding consistent with previous research (e.g., Diop et al., 2020; Yeditha et al., 2023; Jyostna et al., 2025).
The projections indicate a concerning 4% decline in the basin's mean annual rainfall, coupled with a significant spatial redistribution toward northern and central sub-basins. This pattern implies a substantial shift in the regional water balance, potentially increasing flood risks in receiving areas while exacerbating drought and water stress in the southern and western zones. These spatially heterogeneous changes highlight the urgent need for adaptive water resource management. Key strategies should include optimizing irrigation efficiency, updating reservoir operation rules, and revising agricultural cropping calendars to align with the new hydrological regime.
Despite its robust performance, this study is subject to the inherent uncertainties of climate projections and data-driven modeling. Future research should enhance model robustness by incorporating additional climatic predictors—such as temperature, and large-scale circulation indices like ENSO and NAO—as well as high-resolution satellite-based rainfall products to improve spatial representativeness.
In conclusion, the EEMD-SVM-LSTM model provides a powerful and generalizable framework for high-fidelity rainfall forecasting in semi-arid regions. It serves as a critical tool for informing climate-resilient planning and promoting sustainable water resource management in the Lake Urmia Basin and other similarly vulnerable ecosystems worldwide.

کلیدواژه‌ها [English]

  • Rainfall
  • Climate Change
  • Lake Urmia Basin
  • Hybrid Model
  • Deep Learning
  • Machine Learning
  • Time Series Forecasting
  • Water Resource Management
  1. Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., & Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water resources research, 45(10). 1-16. https://doi.org/10.1029/2008WR007615
  2. Abbaspour, M., Javid, A. H., Mirbagheri, S. A., Ahmadi Givi, F., & Moghimi, P. (2012). Investigation of lake drying attributed to climate change. International Journal of Environmental Science and Technology9, 257-266. https://doi.org/10.1007/s13762-012-0031-0
  3. Ahmadi, H., Aminnejad, B., & Sabatsany, H. (2023). Application of machine learning ensemble models for rainfall prediction. Acta Geophys71, 1775–1786 . https://doi.org/10.1007/s11600-022-00952-y
  4. Ahmed, A. A. M. (2022). Development of deep learning hybrid models for hydrological predictions. https://doi.org/10.26192/q7q5z
  5. Attarod, P., Dezhban, A., Pypker, T. G., Sigaroodi, S. K., Bayramzadeh, V., Tang, Q., ... & Mariv, H. S. (2023). Iran’s Changing Climate over the Past 30 Years. Russian Meteorology and Hydrology, 48(1), 53-62.
  6. Azad, M.A.K., Islam, A.R.M.T., Rahman, M.S. et al. (2021). Development of novel hybrid machine learning models for monthly thunderstorm frequency prediction over Bangladesh. Nat Hazards, 108, 1109–1135. https://doi.org/10.1007/s11069-021-04722-9
  7. Azizi, S. (2024). Drought and Environmental Transformations of Lake Urmia: An Integrated Analysis Using Machine Learning and GIS. European Journal of Applied Sciences12(5). 290-315.
  8. Biondi, D., Versace, P., & Sirangelo, B. (2010). Uncertainty assessment through a precipitation dependent hydrologic uncertainty processor: An application to a small catchment in southern Italy. Journal of Hydrology386(1-4), 38-54.
  9. Brockwell, P. J., & Davis, R. A. (1991). Time series: theory and methods. Springer science & business media.
  10. Cai, C., Wang, J., & Li, Z. (2019). Assessment and modelling of uncertainty in precipitation forecasts from TIGGE using fuzzy probability and Bayesian theory. Journal of Hydrology577, 123995. https://doi.org/10.1016/j.jhydrol.2019.123995
  11. Cortes, C., Vapnik, V. (1995). Support-vector networks. Mach Learn20, 273–297 https://doi.org/10.1007/BF00994018
  12. de Sousa, M.F., Uliana, E.M., Aires, R.V.U. et al. (2024). Streamflow prediction based on machine learning models and rainfall estimated by remote sensing in the Brazilian Savanna and Amazon biomes transition. Model Earth Syst Environ10, 1191-1202. https://doi.org/10.1007/s40808-023-01837-9
  13. Delavar, M., Babaee, O., & Fattahi, I. (2014). Evaluation of climate change impacts on Urmia Lake water level fluctuations. Journal of Climate Research1393(19), 53-65.
  14. Drucker, H., Burges, C. J., Kaufman, L., Smola, A., Vapnik, V. (1996). Support vector regression machines. Advances in neural information processing systems, 
  15. Diop, L., Samadianfard, S., Bodian, A., Yaseen, Z. M., Ghorbani, M. A., & Salimi, H. (2020). Annual rainfall forecasting using hybrid artificial intelligence model: integration of multilayer perceptron with whale optimization algorithm. Water Resources Management34, 733-746. https://doi.org/10.1007/s11269-019-02473-8
  16. Ehteram, M., Sammen, S. S., Panahi, F., & Sidek, L. M. (2021). A hybrid novel SVM model for predicting CO2 emissions using Multiobjective Seagull Optimization. Environmental Science and Pollution Research28, 66171-66192. https://doi.org/10.1007/s11356-021-15223-4
  17. Eslamian, S., & Eslamian, F. A. (Eds.)., (2017). Handbook of Drought and Water Scarcity: Environmental Impacts and Analysis of Drought and Water. CRC Press [Imprint].
  18. Farajzadeh, Z., Ghorbanian, E., & Tarazkar, M. H. (2022). The shocks of climate change on economic growth in developing economies: evidence from Iran. Journal of Cleaner Production372, 133687. https://doi.org/10.1016/j.jclepro.2022.133687
  19. Farhangdarehshouri, S. (2023). Quantification of the water balance and experimental evaporation studies, Lake Urmia, Iran. https://doi.org/10.26083/tuprints-00024466
  20. Fekete, B. M., Vörösmarty, C. J., Roads, J. O., & Willmott, C. J. (2004). Uncertainties in precipitation and their impacts on runoff estimates. Journal of Climate, 17(2), 294-304. https://doi.org/10.1175/1520-0442(2004)017%3C0294:UIPATI%3E2.0.CO;2
  21. Fekete, B. M., Vörösmarty, C. J., Roads, J. O., & Willmott, C. J. (2004). Uncertainties in precipitation and their impacts on runoff estimates. Journal of Climate17(2), 294-304.
  22. Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. "O'Reilly Media, Inc.".
  23. Hassanzadeh, E., Zarghami, M., & Hassanzadeh, Y. (2012). Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water resources management26, 129-145. https://doi.org/10.1007/s11269-011-9909-8
  24. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
  25. Hosseinzadehtalaei, P., Tabari, H., & Willems, P. (2017). Uncertainty assessment for climate change impact on intense precipitation: how many model runs do we need?. International Journal of Climatology, 37, 1105-1117.
  26. Hou, S., Geng, Q., Huang, Y., Bian, Z., 2024. Rainfall prediction model based on CEEMDAN-VMD-BiLSTM network. Water, Air, & Soil Pollution, 235(8), 482. https://doi.org/10.1007/s11270-024-07299-8
  27. Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. https://www2.cs.sfu.ca/~oschulte/teaching/726/spring11/svmguide.pdf
  28. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London.
  29. Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology319(1-4), 83-95. https://doi.org/10.1016/j.jhydrol.2005.07.003
  30. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International journal of forecasting22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001
  31. (2023). Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. https://cir.nii.ac.jp/crid/1360019997669261824
  32. Jiang, X. (2023). A combined monthly precipitation prediction method based on CEEMD and improved LSTM. PloS one18(7), e0288211. https://doi.org/10.1371/journal.pone.0288211
  33. Jyostna, B., Meena, A., Rathod, S. et al., (2025). Multiscale rainfall forecasting using a hybrid ensemble empirical mode decomposition and LSTM model. Model. Earth Syst. Environ11, 119. https://doi.org/10.1007/s40808-024-02220-y
  34. Mahdizadeh, M., Eslamian, S., & Sabzevari, Y. (2025). Analysis of surface flows of Urmia Lake Basin: a review. Hydrosystem Restoration Handbook, 217-241. https://doi.org/10.1016/B978-0-443-29802-8.00016-9
  35. Mahsafar, H., Maknoon, R., & Saghafian, B. (2017). The impact of climate change on water level of Urmia Lake. Research in Marine Sciences2(2), 83-94. https://resmarsci.com/wp-content/uploads/2017/06/page-Marine-Sciences-3-3.pdf
  36. Mansouri Daneshvar, M. R., Ebrahimi, M., & Nejadsoleymani, H. (2019). An overview of climate change in Iran: facts and statistics. Environmental Systems Research8(1), 1-10. https://doi.org/10.1186/s40068-019-0135-3.
  37. Mobadersani, A., Hosseinzadeh Dalir, A., Yasi, M., Arvanaghi, H., & Kennard, M. J. (2022). New integrated hydrologic approach for the assessment of rivers environmental flows into the Urmia Lake. Scientific Reports12(1), 8110. https://doi.org/10.1038/s41598-022-10262-4
  38. Najwa Mohd Rizal, N., Hayder, G., Mnzool, M., Elnaim, B. M., Mohammed, A. O. Y., & Khayyat, M. M. (2022). Comparison between regression models, support vector machine (SVM), and artificial neural network (ANN) in river water quality prediction. Processes, 10(8), 1652. https://doi.org/10.3390/pr10081652
  39. Nazari, A., Jamshidi, M., Roozbahani, A., & Golparvar, B. (2025). Groundwater level forecasting using empirical mode decomposition and wavelet-based long short-term memory (LSTM) neural networks. Groundwater for Sustainable Development28, 101397. https://doi.org/10.1016/j.gsd.2024.101397
  40. Nikraftar, Z., Parizi, E., Hosseini, S. M., & Ataie-Ashtiani, B. (2021). Lake Urmia restoration success story: A natural trend or a planned remedy?. Journal of Great Lakes Research47(4), 955-969. https://doi.org/10.1016/j.jglr.2021.03.012
  41. Nourani, V., Baghanam, A. H., Adamowski, J., & Kisi, O. (2014). Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. Journal of Hydrology514, 358-377. https://doi.org/10.1016/j.jhydrol.2014.03.057
  42. Nourani, V., Kisi, Ö., & Komasi, M. (2011). Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. Journal of Hydrology402(1-2), 41-59. https://doi.org/10.1016/j.jhydrol.2011.03.002
  43. Parviz, L., Rasouli, K., & Torabi Haghighi, A., (2023). Improving hybrid models for precipitation forecasting by combining nonlinear machine learning methods. Water Resources Management37(10), 3833-3855. https://doi.org/10.1007/s11269-023-03528-7
  44. Razmara, P., Motiee, H., Massah Bavani, A., Saghafian, B., & Torabi, S. (2016). Risk assessment of climate change impacts on runoff in Urmia Lake basin, Iran. Journal of Hydrologic Engineering, 21(8), 04016023. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001379
  45. Saleh, M. A., Rasel, H. M., & Ray, B. (2024). A comprehensive review towards resilient rainfall forecasting models using artificial intelligence techniques. Green Technologies and Sustainability https://doi.org/10.1016/j.grets.2024.100104
  46. Sezen, C. (2023). Pan evaporation forecasting using empirical and ensemble empirical mode decomposition (EEMD) based data-driven models in the Euphrates sub-basin, Turkey. Earth Science Informatics16(4), 3077-3095. https://doi.org/10.1007/s12145-023-01078-5
  47. Vahdatifar, M., Mousavi, S. F., Farzin, S., & Hadiani, M. O. (2025). Comprehensive Study of Climate Change Impacts on Temperature and Precipitation in East and West of Mazandaran Province in North of Iran. Water, 17(8), 1181. https://doi.org/10.3390/w17081181
  48. Vapnik, V. (1999). The nature of statistical learning theory. Springer science & business media.
  49. Vapnik, V., & Chervonenkis, A. (1974). Theory of pattern recognition. Nauka, Moscow
  50. Wang, W. C., Chau, K. W., Xu, D. M., & Chen, X. Y. (2015). Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water resources management29, 2655-2675. https://doi.org/10.1007/s11269-015-0962-6
  51. Wang, W., Du, Y., Chau, K., Chen, H., Liu, C., & Ma, Q., (2021). A comparison of BPNN, GMDH, and ARIMA for monthly rainfall forecasting based on wavelet packet decomposition. Water13(20), 2871. https://doi.org/10.3390/w13202871
  52. Wang, D., Liu, J., Luan, Q., Shao, W., Fu, X., Wang, H., & Gu, Y. (2023). Projection of future precipitation change using CMIP6 multimodel ensemble based on fusion of multiple machine learning algorithms: A case in Hanjiang River Basin, China. Meteorological Applications30(5), e2144.
  53. Willmott, C. J., & Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research, 30(1), 79-82. doi:10.3354/cr030079
  54. Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis1(01), 1-41. https://doi.org/10.1142/S1793536909000047
  55. Yan, Y., Wang, H., Li, G., Xia, J., Ge, F., Zeng, Q., ... & Tan, L. (2022). Projection of future extreme precipitation in China based on the CMIP6 from a machine learning perspective. Remote Sensing14(16), 4033.
  56. Yeditha, P. K., Anusha, G. S., Nandikanti, S. S. S., & Rathinasamy, M. (2023). Development of a monthly scale precipitation-forecasting model for Indian subcontinent using wavelet-based deep learning approach. Water15(18), 3244. https://doi.org/10.3390/w15183244
  57. Yin, H., Zhang, X., Wang, F., Zhang, Y., Xia, R., & Jin, J. (2021). Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model. Journal of Hydrology598, 126378. https://doi.org/10.1016/j.jhydrol.2021.126378
  58. Yu, Y., Zhang, & H., Singh, V. P. (2018). Forward prediction of runoff data in data-scarce basins with an improved ensemble empirical mode decomposition (EEMD) model. Water10(4), 388. https://doi.org/10.3390/w10040388
  59. Zhao, J., Nie, G., & Wen, Y. (2023). Monthly precipitation prediction in Luoyang city based on EEMD-LSTM-ARIMA model. Water Science & Technology87(1), 318-335. https://doi.org/10.2166/wst.2022.425
  60. Zhao, X., Zhang, Y., & Wang, J. (2023). Application of EEMD in hydrological time series analysis. Journal of Hydrology, 620, 129456. https://doi.org/10.1016/j.jhydrol.2023.129456