مطالعۀ برهم‌کنش شوری خاک رویشگاه و زیست‌تودۀ گیاهان اشنان و قره‌داغ در رویشگاه دشت اردستان، گنبد نمک قم و کاشان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی مقطع دکتری مدیریت و کنترل بیابان دانشگاه یزد

2 دانشیار، دانشکده منابع طبیعی و کویرشناسی - گروه مدیریت مناطق خشک و بیابانی‎ ‎

3 محقق‎ ‎مستقل، گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد

4 ‎دانشیار، دانشکده منابع طبیعی و کویرشناسی - گروه مدیریت مناطق خشک و بیابانی دانشگاه یزد

‎10.22052/deej.2025.256740.1103

چکیده

این پژوهش با هدف بررسی تأثیر شوری خاک بر زیست‌تودۀ دو گونۀ گیاهی اشنان (Seidlitzia rosmarinus) و قره‌داغ (Nitraria schoberi) در بیابان‌های مرکزی ایران انجام شد. مطالعه در پنج رویشگاه شامل دشت اردستان، فخره کاشان، گنبد نمک قم، حسین‌آباد و پارک جنگلی کاشان با استفاده از روش ترانسکت-پلات و نمونه‌برداری از خاک در دو عمق  ۰ تا ۲۰ و ۲۰ تا ۴۰ سانتی‌متری صورت گرفت. ویژگی‌های فیزیکی و شیمیایی خاک (شامل EC، pH،SAR ) و زیست‌توده روی زمین عمدتاً شامل (برگ، ساقه، انشعابات، ریشه و...) و زیست‌تودۀ زیرزمینی با حفاری کامل ریشه تعیین و اندازه‌گیری شد. نتایج نشان داد شوری خاک (EC) و نسبت جذب سدیم (SAR)‌ تأثیر معناداری بر رشد گیاهان دارد. در مناطق با شوری بالا (EC >50 dS/m) و (SAR >100)، زیست‌تودۀ قره‌داغ به‌طور قابل توجهی بیشتر از اشنان بود، درحالی‌که اشنان در مناطق با شوری متوسط تا پایین (EC <40 dS/m) برتری داشت. برای مثال، در منطقۀ قم (EC متوسط)، زیست‌تودۀ قره‌داغ ۴۰۵۶ گرم (ریشۀ تر) و ۲۰۲۵۰ گرم (برگ تر) ثبت شد، درحالی‌که اشنان در همین منطقه عملکرد کمتری نشان داد. درمقابل، در حسین‌آباد (EC پایین)، زیست‌تودۀ اشنان ۶ برابر قره‌داغ بود. این تفاوت بیانگر تحمل بالاتر قره‌داغ به شوری و سازگاری اشنان به شرایط کم‌شورتر است. یافته‌ها تأکید می‌کنند که انتخاب گونه‌های سازگار با سطوح شوری خاک، نقش کلیدی در موفقیت پروژه‌های احیای اراضی شور و بیابان‌زدایی دارد. کشت ترکیبی این دو گونه با توجه به تنوع شوری خاک در مناطق خشک، به‌عنوان راهکاری مؤثر برای بهبود پایداری اکوسیستم پیشنهاد می‌شود. همچنین، ادغام این روش با مدیریت منابع آب و کاهش استفاده از روش‌های مهندسی پرهزینه، پایداری بلندمدت خاک را تضمین می‌کند. پژوهش‌های آینده باید بر تأثیر متقابل گونه‌های هالوفیت بر جوامع میکروبی خاک و پتانسیل آن‌ها در جذب کربن متمرکز شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Interaction of Soil Salinity with Biomass of Seidlitzia rosmarinus and Nitraria schoberi in the Desert Regions of Ardestan, Qom, and Kashan

نویسندگان [English]

  • Aboozar Keshavarz 1
  • Hakimzadeh Ardakani‎ Mohammad Ali 2
  • Motaharah Esfandiari 3
  • Kazem Kamali Aliabadi 4
1 Student of Desert Management and Control, Yazd University
2 Associate Professor, Faculty of Natural Resources and Desert Studies - Department of Arid and Desert Areas Management, Yazd University
3 Independent Researcher, Department of Arid and Desert Areas Management, Faculty of Natural Resources and Desert Studies, Yazd University
4 Associate Professor, Faculty of Natural Resources and Desert Studies - Department of Arid and Desert Areas Management, Yazd University
چکیده [English]

Introduction: Soil salinity is a major factor that limits plant growth and biomass production, particularly in arid and semi-arid regions. To effectively restore land and combat desertification in these challenging environments, it's crucial to understand how native halophyte species — plants adapted to salty conditions — respond to different levels of soil salinity. This study focused on evaluating the impact of soil salinity on the biomass production of two specific salt-tolerant plant species: Seidlitzia rosmarinus and Nitraria schoberi. We conducted our research across various sites within the central deserts of Iran, including Ardestan Plain, Fakhreh (Kashan), Gonbad Namaki (Qom), Hosseinabad, and Kashan Forest Park. To gather our data, we used a transect-plot method for vegetation sampling. For soil analysis, samples were collected at two depths: 0–20 cm and 20–40 cm, allowing us to assess vertical variations in soil properties. We measured several key physical and chemical characteristics of the soil, including electrical conductivity (EC), pH, sodium adsorption ratio (SAR), and total neutralizing value (T.N.V.). Finally, to determine biomass, we measured both aboveground components (leaves, stems, branches) and belowground biomass (roots), which involved complete root excavation and weighing after oven-drying.
 
Materials and Methods: Data analysis was performed using SPSS and Excel software. Before proceeding with statistical tests, the normality of data distribution was confirmed. To examine differences among treatments (species and sites), we used one-way analysis of variance (ANOVA). This was followed by Duncan's multiple range test at a 5% significance level (α=0.05) to pinpoint specific differences. Additionally, Pearson's correlation coefficient was calculated to assess the relationships between various biomass traits and key soil salinity indicators, specifically electrical conductivity (EC) and sodium adsorption ratio (SAR).
 
Results: We found significant differences (p<0.01 and p<0.05) in the measured traits across the five study sites. Soil properties like EC, pH, and T.N.V. varied significantly by location, indicating that local environmental factors play a big role. Interestingly, only plant available water (PAW) showed a significant variation with soil depth (p<0.05), meaning that site conditions have a stronger impact on soil quality than differences between the two depths we sampled. When looking at biomass, we saw that site conditions significantly influenced canopy cover, canopy diameter, and total biomass production (p<0.01). Plus, the interaction between the site and plant species significantly affected biomass accumulation. In highly saline environments (where EC was over 50 dS/m and SAR over 100), Nitraria schoberi performed better than Seidlitzia rosmarinus, producing higher root and shoot biomass. For example, in Qom, Nitraria schoberi had a root biomass of 4056 g and a leaf biomass of 20,250 g, while Seidlitzia rosmarinus had much lower biomass in the same conditions. Conversely, in less saline environments (EC less than 40 dS/m) like Hosseinabad, Seidlitzia rosmarinus produced nearly six times more biomass than Nitraria schoberi. This shows that Seidlitzia rosmarinus is more sensitive to extreme salinity and prefers moderately saline conditions.
Our correlation analysis confirmed a positive relationship between Nitraria schoberi's biomass production and increasing soil salinity. In contrast, Seidlitzia rosmarinus's biomass was negatively affected by high EC and SAR levels.
 
Discussion and Conclusion: The findings of this study underscore the significant role native halophyte species can play in restoring saline and degraded soils. Specifically, Nitraria schoberi demonstrated a remarkable ability to maintain biomass production under highly saline conditions, highlighting its potential for use in severely degraded environments. Conversely, Seidlitzia rosmarinus performed better in moderately saline environments, suggesting its suitability for areas with less extreme soil conditions. Cultivating these halophyte species offers a cost-effective and sustainable approach to land reclamation. Their presence not only contributes to soil stabilization by increasing organic matter and preventing wind erosion, but also enhances the soil's physical and chemical quality through processes such as ion uptake and organic carbon input. This biological method provides a viable alternative to expensive engineering techniques for combating desertification. Our study suggests that species selection for restoration projects should be based on detailed assessments of specific soil salinity conditions. Furthermore, adopting an intercropping system that combines multiple halophyte species with varying salinity tolerances could significantly increase the resilience and sustainability of restored ecosystems. Integrating these biological solutions with strategic water resource management, such as using treated wastewater or saline water for irrigation, can further enhance restoration success. For future research, we recommend focusing on a deeper understanding of the interactions between halophyte species and soil microbial communities, as these play a crucial role in nutrient cycling and plant health under saline conditions. Additionally, investigating the carbon sequestration potential of these species could offer new insights into their contribution to climate change mitigation strategies.

کلیدواژه‌ها [English]

  • Soil salinity
  • Sodium adsorption ratio (SAR)
  • Halophytic plants
  • Land reclamation
  • Arid ecosystems
  1. Ahmadi, M., Rezaei, N., & Karami, A. (2019). Effect of salinity on growth and performance of rangeland species in arid regions. Iranian Journal of Rangeland and Desert Research, 27(3), 45-60.
  2. Alberto, B., & Angelina, M. Y., (2011). Accuracy and bias on the estimation of aboveground biomass in the woody vegetation of the Sonoran Desert. Botany, 89(9), 625-633.
  3. Al-Shammary, A. A. G., Al-Shihmani, L. S. S., Fernández-Gálvez, J., & Caballero-Calvo, A. (2024). Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes.Journal of environmental management, 364, 121487.
  4. Amiraslani, S., Saeed, Darbandi, S., Farahvash, F., & Yousefzadeh, M. (2013). Cultivation of halophyte plants for reclamation of saline and sodic soils. First National Conference on the Impact of Urmia Lake Recession on Soil and Water Resources, Tabriz, Iran.
  5. Azarmi-Atajan., F. & Sayyari-Zohan, M. H. (2020). Alleviation of salt stress in lettuce (Lactuca sativa ) by plant growth-promoting rhizobacteria. Journal of horticulture and postharvest research, 3, 67-78.
  6. Azernivand, H., & Dastmalchi, H. (2000). Phenology of four species in desert of Kashan. Biaban, 5(2), 16–22.
  7. Baghestani Maybodi, N., & Taghi Zare, M. (2009). Some ecological requirements and exploitation of Seidlitzia rosmarinus in the desert region of Yazd province. Enviromental Sciences, 6(3): 31-42.
  8. Baghestani Meybodi, N. (2008). Determination of appropriate sample size for estimating annual production in steppe rangelands of Yazd Province. Scientific-Research Journal of Rangeland, (2), 162–171.
  9. Bahreini, M., Dordipour, E., & Khormali, F. (2013). The Role of Non-Exchangeable Potassium on Plant Nutrition (Zea mays L.) in Predominant Soil Series of Golestan Province. Water and Soil Science23(2), 159-176.
  10. Baldock, J. A., & Skjemstad, J. O. (2000). Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry, 31, 697-710.
  11. Boyaghchi, M. A., Zolfaghari, B., & Karim-Nejad, M. M. (2017). Evaluation and optimization of Seidlitzia rosmarinus (Ashnan) extract in washing historical textiles. International Journal of Pharmaceutical and Phytopharmacological Research, 7(3), 25-29.
  12. Brady, N. C., & Weil, R. R. (2008). The Nature and Properties of Soils. 14th Edition. Prentice Hall.
  13. Dinarvand, M., Keneshloo, H., & Fayaz, M., (2018). Vegetation of dust sources in Khuzestan Province. Irannature, 3(3), 32-42.
  14. Farzami Sepehr, M., Ghorbanali, M., & Sanaei Rad, H. (2011). Study of some growth and biochemical parameters of Nitraria schoberi L. in natural habitat of Howz-e-Soltan in different seasons. Plant and Ecosystem Scientific-Research Quarterly, 7(25), 3–15.
  15. Hakimzadeh Ardakani, M.A., Esfandiari, M., Mosleh Arani, A., & Maleki Nejad, H. (2010). Effects of saline groundwater application on soil properties and performance of three rangeland species. Rangeland and Watershed Management Journal. Iranian Journal of Natural Resources, 63(2), 197–206.
  16. Hasanzadeh Ghoort Tappeh, A., & Khoshbakht, S. (2017). Ecology and medicinal properties of the desert plant Nitraria schoberi. Second National Conference on Rainfed Medicinal Plants of Iran, Urmia, Iran.
  17. Havlin, J. L., Beaton, J. D., Tisdale, S. L., & Nelson, W. L. (2013). Soil fertility and fertilizers (8th ed.). Pearson.
  18. Heidari, M., Hosseinabadi, R., Anbari, K., Pournia, Y., & Tarverdian, A., (2014). Seidlitzia rosmarinus for lower urinary tract symptoms associated with benign prostatic hyperplasia: A pilot randomized controlled clinical trial. Complementary Therapies in Medicine, 22(4), 607-613.
  19. Hillel, D. (1998). Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Academic Press, Waltham.
  20. Joneidi, H., Amani, S., & Karami, P. (2015). Biomass assessment of above- and below-ground organs of Festuca ovina under different grazing intensities in Bijar Protected Area. Watershed Management Research Journal, 28(3), 76–83.
  21. Kay, B. D. (1998). Soil structure and organic carbon: A review. In R. Lal et al. (Eds.), Soil processes and the carbon cycle (pp. 169-197). CRC Press.
  22. Liu, S., Hou, X., Yang, M., Cheng, F., Coxixo, A., Wu, X., & Zhang, Y. (2018). Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China. Catena165, 279-285.
  23. Mavi, M.S. & Marschner, P. (2013). Salinity affects the response of soil microbial activity and biomass to addition of carbon and nitrogen. Soil Research, 5(1), 68-75.
  24. Mohamed, A. A., Ali, S. I., Darwesh, O. M., El-Hallouty, S. M., & Sameeh, M. Y. (2015). Chemical compositions, potential cytotoxic and antimicrobial activities of Nitraria retusa methanolic extract sub-fractions. International Journal of Toxicology and Pharmacology Research, 7, 204–212.
  25. Mohammadi, S., Naderi, H., & Karimi, F. (2017). Effect of salinity and sodium adsorption ratio on the growth of rangeland plants in semi-arid areas. Natural Resources Research Journal, 15(4), 35–50.
  26. Momeni Damaneh, J., & Panahi, F. (2016). Effect of alkaline stress on nutrient concentrations in Nitraria schoberi. Plant and Ecosystem Scientific-Research Quarterly, 12(47), 71–83.
  27. Mossa, J. S. (1985). A study on the crude antidiabetic drugs used in Arabian folk medicine. International Journal of Crude Drug Research, 23(3):145-137 .‏
  28. Mozaffarian, V. ( 2000). Flora of Yazd. Yazd: Yazd Publishers. plan. Khorasan: Khorasan Agriculture and Natural Resources Research Center.
  29. Najafi Zilaie, M., Mosleh Arani, A., Etesami, H., Dinarvand, M. (2022b). Halotolerant rhizobacteria enhance the tolerance of the desert halophyte Nitraria schoberi to salinity and dust pollution by improving its physiological and nutritional status. Applied Soil Ecology, 179, 104578.
  30. Najafi Zilaie, M., Mosleh Arani, A., Etesami, H., Dinarvand, M., & Dolati, A. (2022a). Halotolerant plant growth-promoting rhizobacteria-mediated alleviation of salinity and dust stress and improvement of forage yield in the desert halophyte Seidlitzia rosmarinus. Environmental and Experimental Botany. 201, 104952.
  31. Namm, B., & Berrill, J. (2016) Tanoak (Notholithocarpus densiflorus) Coarse Root Morphology: Prediction Models for Volume and Biomass of Individual Roots. Open Journal of Forestry, 6, 1-13.
  32. Naseri, H., Naseri, H.M., Jafari, M., & Sangdehi, S. (2011). Effect of salinity on germination and growth of Nitraria schoberi. Rangeland Journal, 17(1).
  33. Naseri, H., Mohammad-esmaeili, M., Tahmasebi, A, & Fakhireh, A. (2020). The effect of Seidlitzia rosmarinus cultivation on vegetation and soil changes in the desert area of Chah Bagher Shahroud. PEC, 8(17), 89-100
  34. Pozesh shirazi, M., Samavat, S., Zolfi Bavariani, M., Fakhri, F., & Moradi, G. (2012). Effects of Organic Matter from Different Sources on Soil Physico-Chemical Properties and Crop Yield in Boushehr Province. Iranian Journal of Soil Research25(4), 285-293.
  35. Rabiei, H.A. (2012). Soil improvement by medicinal plants. National Conference on Environment and Plant Production, Semnan, Iran.
  36. Rahmatizadeh, A., Jafari, M., & Karimian Eghbal, M. (2014). Identifying saline lands and halophytes of Qom province. Iranian Journal of Range and Desert Research, 21(4), 580–590.
  37. Ranjbar Fordoei, A., & Dehghani Bidgholi, R. (2016). Impact of salinity stress on photochemical efficiency of photosystem II, chlorophyll content, and nutrient elements of Nitere bush (Nitraria schoberi) plants. Journal of Rangeland Science, 6(1), 1-9.
  38. Rubio, F., Nieves-Cordones, M., Horie, T. & Shabala, S. (2020). Doing business as usual comes with a cost: evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions. New Phytologist, 225(3), 1097-1104.
  39. Sanchez, P.A., Villachica, J.H.B., D.E. 1983. Soil fertility dynamics after clearing a tropical rainforest in Peru. Soil Sci. Soc. Amer. J.47: 1178-1171.
  40. Shilev, S. (2020). Plant-Growth-Promoting Bacteria Mitigating Soil Salinity Stress in Plants. Applied Science, 10(20), 7326.
  41. Smith, J., & Johnson, P. (2017). Effects of soil texture and salinity on desert plant distribution. Journal of Arid Ecosystems, 45(2), 123-137.
  42. Thomas, G. W. (1982). Exchangeable cations. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd ed., pp. 159–165). American Society of Agronomy, Soil Science Society of America.
  43. ‎UNCOD (Desertification on Conference Nations United). (1997). Desertification: its causes and ‎consequences Oxford, UK: Pergamon Press, 78‏
  44. Wang, Y., Xu, W., Tang, Z., & Xie, Z. (2021). A biomass equation dataset for common shrub species in China. Earth System Science Data, 13(2), 453-461.
  45. Xiao, H., Lin, Q., Li, G.et al. (2022). Comparison of biochar properties from 5 kinds of halophyte produced by slow pyrolysis at 500 °C. Biochar, 4, 12.
  46. Yang, Y., Yang, N., & Cavieres, H. S. (2010). Positive associations between the cushion plant Arenaria polytrichoides (Caryophyllaceae) and other alpine plant species increase with altitude in the Sino-Himalayas. Journal of Vegetation Science, 21, 1048–1057.
  47. Yeganeh, H., & Saadatpour, M. (2016). Investigation of medicinal and ecological properties of Nitraria schoberi. First National Conference on Aromatic and Spice Medicinal Plants, Gonbad Kavous University, Iran.