بررسی تولید رواناب و فرسایش بین شیاری تحت‌تأثیر باران و باد در شرایط آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس

‎10.22052/deej.2025.255449.1078

چکیده

پژوهش حاضر با هدف بررسی فرایندهای ترکیبی باران و باد بر فرسایش بین‌شیاری در شرایط آزمایشگاهی روی خاک تهیه‎شده از حوزۀ آبخیز کجور واقع در استان مازندران انجام ‌شد. به همین منظور از سه کرت آزمایشگاهی با ابعاد 5/0×1×6 متر در شیب حدود 30 درصد و شدت بارندگی تقریبی 50 میلی‌متر بر ساعت با دوام 30 دقیقه و دو سرعت باد مخالف شیب (پایین‌دست به بالادست کرت) حدود سه و شش متر بر ثانیه استفاده شد. نتایج مؤید آن بود که میانگین زمان شروع رواناب در شرایط هوای آرام چهار دقیقه و 19 ثانیه و سرعت بادهای سه و شش متر بر ثانیه به‌ترتیب حدود هفت دقیقه و 28 ثانیه و 10 دقیقه و 16 ثانیه بوده است. میانگین حجم و ضریب رواناب در شرایط هوای آرام به‌ترتیب برابر 95/114 لیتر و 39/93 درصد و در شرایط باد مخالف شیب با سرعت‌های سه و شش متر بر ثانیه به‌ترتیب برابر 89/123 و 59/120 لیتر و 22/89 و 63/80 درصد و اختلاف معنی‌دار (01/0p<) بوده است. علاوه‌بر آن، با توجه به یافته‌ مشخص شد که میانگین هدررفت خاک در شرایط بدون باد و باد با سرعت‌های سه و شش متر بر ثانیه به‌ترتیب برابر 88/1933، 25/2107 و 58/2858 گرم بر مترمربع و غلطت رسوب نیز برابر با 20/142، 69/212 و 13/410 گرم بر لیتر و اختلاف معنی‌دار (01/0p<) بوده است. نتایج پژوهش حاضر می‌تواند تحلیل‌های مفیدی برای مدل‌سازی صحیح فرایند فرسایش آبی در مناطق متأثر از باد فراهم کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Influence of Rain and Wind on Runoff Production and Interrill Erosion under Laboratory Conditions

نویسندگان [English]

  • Mahin Kalehhouei
  • Seyed Hamidreza Sadeghi
  • Abdulvahed Khaledi Darvishan
Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University
چکیده [English]

Introduction: Characterized by 25% global biodiversity, the soil is known as the unique substrate sustaining Earth's inhabitants. On the other hand, soil erosion caused by water is a primary factor in land degradation. Approximately 75 billion tons of soil and living organisms are removed from soil ecosystems annually due to soil degradation and erosion. Moreover, soil erosion may endanger the quality and health of soil and water. The primary determinants of water erosion are static topographical features such as steepness and slope direction, and dynamic climatic factors, including precipitation and wind, which may cause changes in soil’s hydrological processes, indirectly or indirectly affecting other environmental factors. The main point concerning the initiation of water erosion is the impact of raindrops on the soil surface. However, processes affected by the raindrops from the time of descent to the impact on the soil surface have been underresearched, neglecting the influential role of raindrops in creating and changing the behavior of water erosion. Therefore, this study was conducted on the soil collected from the Kojour Watershed in Mazandaran Province, Iran, mainly focusing on the interaction of rain and wind with interrill erosion under laboratory conditions.
 
Materials and methods: The soil samples, especially those collected from the summer rangelands of the Northern Alborz Range of Kojur Watershed, Mazandaran Province, Iran, were transported to the Rainfall and Erosion Simulation Laboratory of the Faculty of Natural Resources, Tarbiat Modares University. For this o this end, three laboratory plots with dimensions of 0.5 × 1 × 6 m were used at a slope of about 30%. Moreover, the intensity of rainfall was approximately 50 mm h-1 with a duration of 30 min under no-wind control conditions and two wind velocities of 3 and 6 m s-1 at a slope of 30%. The wind direction of the study area was also considered, opposite the slope (from bottom to top of the plot), as it mainly occurred during the storms in the study region. Furthermore, the wind velocity generated during the experiments was closely monitored using an anemometer to ensure accuracy and consistency throughout the study. Finally, the effectiveness of the interrill erosion process caused by wind-affected rain was demonstrated through statistical comparisons against the control plot.
 
Results: According to the results of the study, the mean runoff start time varied significantly based on wind velocity. In this regard, the runoff started after approximately 4:19 minutes under calm conditions. Moreover, when wind velocities increased to 3 m s-1, the mean runoff start time was delayed to 7:28 minutes, and the delay extended further to 10:16 minutes at a wind velocity of 6 m s-1. The aforementioned results indicated that the mean runoff volume was influenced by wind velocity. On the other hand, the mean runoff volume was found to be 114.95 l under wind-less conditions. Accordingly, as wind velocity increased to 3 m s-1, the mean runoff volume rose slightly to 123.89 l. However, at a wind velocity of 6 m s-1, the runoff volume slightly decreased to 120.59 l. The runoff coefficients were also found to be 108.33, 114.20 and, 111.27%, respectively.
Furthermore, the study found that the mean soil loss increased under higher wind velocities. On the other hand, the mean soil loss was reported as 1933.88 g under calm conditions. In this regard, when the wind velocity increased to 3 m s-1, the soil loss rose to 2107.25 g, and it further escalated to 2858.58 in cases where the velocity reached 6 m s-1. The sediment concentrations were calculated as 142.20 g l-1 under calm conditions, reaching 212.69 g l-1 and 410.13 g l-1 at wind velocities of 3 m s-1 and 6 m s-1, respectively. These results suggest a progressive increase in sediment concentration with rising wind velocities, underscoring the significant influence of wind-induced turbulence on sediment mobilization and transport in runoff. Moreover, the analysis of the results revealed that wind velocity exerted a statistically significant influence on runoff and interrill erosion components at the 5% significance level.
 
Conclusion: The results of this study confirm that wind-driven rain significantly influences the components of runoff and soil loss. These findings can be a game-changer, providing valuable insights for accurately modeling the water erosion process under natural circumstances. Furthermore, the findings can significantly help executive department managers estimate soil erosion caused by wind storms, thereby fostering sound management and prioritization of erosion-prone areas and soil and water conservation measures.

کلیدواژه‌ها [English]

  • Land Degradation
  • Rainfall Erosivity
  • Soil loss
  • Wind Driven Water Erosion
  1. Arabkhedri, M., Shadfar, S., Jafari-Ardakani, A., Bayat, R., Khajavi, E., & Mahdian, M. H. (2018). Improving Water Erosion Estimates for Iran. Watershed Management Research31(3), 13-27. [In Persian]
  2. Biddoccu, M., Ferraris, S., Opsi, F., & Cavallo, E. (2016). Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North–West Italy). Soil and Tillage Research, 155, 176-189.
  3. Cerda, A. (1997). Rainfall drop size distribution in the Western Mediterranean basin, Val`encia. Spain. Catena, 30 (2–3), 169–182.
  4. Christiansen, J.E. (1942). Irrigation by sprinkling, The University of California agricultural experiment station. Bulletin, Berkeley (670), 124.
  5. Cornelis, W.M., Erpul, G., & Gabriels, D. (2004). The ICE wind tunnel for wind and water interaction research. Wind and rain interaction in erosion, (50): 197–224.
  6. Defersha, M.B., Quraishi, S., & Mellese, A.M. (2011). The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia. Hydrology and Earth System Sciences, 15: 2367-2375.
  7. Ding, Z., Zhang, Z., Li, Y., Zhang, L., & Zhang, K. (2020). Characteristics of magnetic susceptibility on cropland and pastureland slopes in an area influenced by both wind and water erosion and implications for soil redistribution patterns. Soil and Tillage Research, 199, 104568.‏
  8. Disrud, L.A., Lyles, L., & Skidmore, E.L. (1969). How wind affects the size and shape of raindrops. Agricultural Engineering, 50(10): 617-626.
  9. Du, X., Jian, J., Du, C., & Stewart, R. D. (2022). Conservation management decreases surface runoff and soil erosion. International soil and water conservation research, 10(2), 188-196.
  10. Erpul, G., Gabriels, D., & Norton, L.D. (2004).Wind effects on sediment transport by raindrop impacted shallow flow. Earth Surface Processes and Landforms, 29(8): 955–967.
  11. Fang, Q., Zhao, L., Hou, R., Fan, C., & Zhang, J. (2022). Rainwater transformation to runoff and soil loss at the surface and belowground on soil-mantled karst slopes under rainfall simulation experiments. Catena, 215, 106316.
  12. Fox, D. M., & Bryan, R. B. (2000). The relationship of soil loss by interrill erosion to slope gradient. Catena, 38(3), 211-222.
  13. Fister, W., Iserloh, T., Ries, J.B., & Schmidt, R.G. (2011). Comparison of rainfall characteristics of a small portable rainfall simulator and a combined portable wind and rainfall simulator. Zeitschrift für Geomorphologie Supplementary Issues, 55(3):109–126.
  14. Fu, Y., Wang, D., Sun, W., & Guo, M. (2023). Impacts of grass planting density and components on overland flow hydraulics and soil loss. Land Degradation & Development, 34(1), 234-249.
  15. Gabriels D., Erpul G., & Vermang J. (2011). The “Erosion Component” of WEPP (Water Erosion Prediction Project) for wind driven rain. In: Vermang, J., Gabriels, D., Cornelis, M., De Boever, M. (Eds.), Land Degradation Processes and Assessment-Wind Erosion, Interrill Erosion, Gully Erosion. Land Cover Features. UNESCO Chair of Eremology, Ghent, Belgien, 9-18 pp.
  16. Golami, L., Sadeghi, S.H.R., & Homaee, M. (2014). Effect of rice straw mulch on runoff threshold and coefficient from rainfall. Iranian Water Researches Journal8(2), 33-40. [In Persian]
  17. Homayounfar, V., & Khaledi Darvishan, A. (2016). Affectability of splash from soil disturbance in laboratorial erosion studies. Watershed Engineering and Management8(4), 478-485. [In Persian]
  18. Iserloh, T., Fister, W., Marzen, M., Seeger, M., Kuhn, N. J., & Ries, J. B. (2013). The role of wind-driven rain for soil erosion–an experimental approach. Zeitschrift für Geomorphologie, Supplementary Issues, 57(1): 193-201.‏
  19. Kiani-Harchegani, M., & Sadeghi, S.H.R. (2017). Effects of consecutive storms on splash erosion components for two different rainfall intensities under laboratory conditions. Iranian journal of Ecohydrology4(3), 837-846. [In Persian]
  20. Kiani-Harchegani, M., Sadeghi, S.H.R., Singh, V. P., Asadi, H., Abedi, M. (2019). Effect of rainfall intensity and slope on sediment particle size distribution during erosion using partial eta squared. Catena, 176, 65-72.‏
  21. Kalehhouei, M., Sadeghi, S.H.R., & Khaledi Darvishan, A. (2022). Water Erosion Reactivity from Some Climatic Factors. Extension and Development of Watershed Management9(34), 20-27. [In Persian]
  22. Kalehhouei, M., Sadeghi, S.H.R., & Khaledi Darvishan, A. (2023). Changes in raindrop properties due to wind blowing using image processing. 221, 106789.
  23. Khaledi Darvishan, A., Sadeghi, S.H.R., Homaee, M., & Arabkhedri, M. (2014). Measuring sheet erosion using synthetic color‐contrast aggregates. Hydrological Processes, 28(15): 4463-4471.‏
  24. Kheirabadi, H., Mahmoodabadi, M., Jalali, V., & Naghavi, H. (2018). Sediment flux, wind erosion, and net erosion are influenced by soil bed length, wind velocity, and aggregate size distribution. Geoderma, 323, 22–30.
  25. Kourgialas, N.N., Koubouris, G.C., Karatzas, G.P., & Metzidakis, I. (2016). Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: The effect of climate change. Natural Hazards, 83(1), 65–81.
  26. Kukal, S.S., & Sarkar, M. (2010). Splash erosion and infiltration in relation to mulching and polyvinyl alcohol Application in semi-arid tropics. Archives of Agronomy and Soil Science, 56(46): 697-705.
  27. Lal, R. (1998). Soil erosion impact on agronomic productivity and environment quality: Criti Review, Plant Science, 17, 319-464.
  28. Marzen, M., Iserloh, T., Casper, M. C., & Ries, J. B. (2015). Quantification of particle detachment by rain splash and wind-driven rain splash. Catena, 127, 135-141.
  29. Mahmoodabadi, M., Zamani, S., & Yazdanpanah, N. (2021). Organic carbon loss and sediment enrichment during interrill erosion influenced by simultaneous wind and rain. Watershed Engineering and Management13(1), 13-28. [In Persian]
  30. Montenegro, A. D. A., Abrantes, J. R. C. B., De Lima, J. L. M. P., Singh, V., & Santos, T. E. M. (2013). Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena,109, 139-149.
  31. Nouhou Bako, A., Darboux, F., James, F., Josserand, C., & Lucas, C. (2016). Pressure and shear stress caused by raindrop impact at the soil surface: Scaling laws depending on the water depth. Earth Surface Processes and Landforms,41(9), 1199-1210.
  32. Poormirkamali, S., & Mahmoodabadi, M. (2021). Losses of soil, organic carbon, phosphorous and potassium due to interrill erosion influenced by different levels of wind velocity and plant residue coverage. Journal of Soil Management and Sustainable Production10(4), 173-189. [In Persian]
  33. Rezaei Arshad, R., & Mahmoodabadi, M. (2018). Simultaneous effects of wind and rain on hydraulic parameters of sheet flow and interrill erosion rate. Journal of Soil Management and Sustainable Production8(2), 1-22. [In Persian]
  34. Rezai Arshad, R., Mahmoodabadi, M., Farpoor, M. H., & Fekri, M. (2019). Experimental investigation of rain-induced splash and wash processes under wind-driven rain. Geoderma, 337: 1164-1174.‏
  35. Romkens, M.J.M., Helming, K., & Prasad, S.N. (2001). Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena, 46(2-3): 103-123.
  36. Sadeghi S.H.R. (2010). Study and measurement of water erosion. Publications of Tarbiat Modares University. 200 p. [In Persian]
  37. Sadeghi, S.H.R., Moatamednia, M., & Behzadfar, M. (2011). Spatial and temporal variations in the rainfall erosivity factor in Iran. Journal of Agricultural Science and Technology, 13: 451-464.
  38. Sadeghi, S.H.R., Zarif Moazam, M., & Mirnia, K. (2011). Effect of Slope Steepness and Aspect on Surface Runoff and Sediment Yield from Experimental Small Plots in Kojour Watershed. Water and Soil25(3), 583-592. [In Persian]
  39. Sadeghi, S.H.R., Abdollahi, Z. & Khaledi Darvishan. A.V. (2013). Experimental comparison of some techniques for estimating natural rain drop size distribution in south coast of the Caspian Sea, Iran. Hydrological Sciences Journal, 58(6):1-9.
  40. Sadeghi, S.H.R., Hazbavi, Z., & Gholamalifard, M. (2019). Interactive impacts of climatic, hydrologic and anthropogenic activities on watershed health. Science of the Total Environment, 648: 880–893.
  41. Saeidi , P., & Sadeghi, S.H.R. (2012). Analysis of Observed Sedimentgraphs and Rating Loops on Storm Basis in Educational Watershed of Tarbiat Modares University, Iran. Journal of Water and Soil Conservation17(1), 97-112. [In Persian]
  42. Schmidt, J., Werner, M. V., & Schindewolf, M. (2017). Wind effects on soil erosion by water—A sensitivity analysis using model simulations on catchment scale. Catena, 148: 168-175.‏
  43. Shapiro, S. S., & Wilk M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4): 591-611.‏
  44. Shi, P., Li, P., Li, Z., Sun, J., Wang, D., & Min, Z. (2022). Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China. Agricultural Water Management, 259, 107231.
  45. Tanner, S., Ben-Hur, M., Argaman, E., & Katra, I. (2023). The effects of soil properties and aggregation on sensitivity to erosion by water and wind in two Mediterranean soils. Catena,221, 106787.
  46. Umback, C.R., & Lembke, W.D. (1966). Effect of wind on falling water drops. Transactions of the American Society of Agricultural Engineers 9(6): 805–808.
  47. Wang, L., Li, Y., Wu, J., An, Z., Suo, L., Ding, J., Li, Sh., Wei, D., & Jin, L. (2023). Effects of the Rainfall Intensity and Slope Gradient on Soil Erosion and Nitrogen Loss on the Sloping Fields of Miyun Reservoir. Plants, 12(3), 423.
  48. Won C. H., Choi Y. H., Shin M. H., Lim K. J., and Choi J. D. (2012). Effects of rice straw mats on runoff and sediment discharge in a laboratory rainfall simulation. Geoderma, 189: 164-169.
  49. Zhang, Q., Fan, J., Zhang, X. (2016). Effects of simulated wind followed by rain on runoff and sediment yield from a sandy loessial soil with rills. Journal of Soils and Sediments, 16, 2306-2315.