سنجش ارتباط بین نوسانات آب زیرزمینی و مساحت پهنه‌های آبی (مطالعۀ موردی: تالاب ارژن-فارس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه حکیم سبزواری

2 مرکز آموزش عالی فیروزآباد

3 خراسان رضوی - سبزوار - توحید شهر- دانشگاه حکیم سبزواری

10.22052/deej.2022.11.35.61

چکیده

بررسی نوسان‌های سطح آب دریاچه‌ها به‌منظور حفاظت آن‌ها به‌لحاظ اهمیت، ماهیت و موقعیت این مجموعه‌های آبی و به‌عنوان یک میراث طبیعی در سال‌های اخیر در بین کشورها در سطح ملی و منطقه‌ای جایگاه ویژه‌ای پیدا کرده است. نوسان‌های یادشده تأثیرات زیادی بر محیط پیرامون و از جمله تغییرات سطح آب زیرزمینی در حوضۀ آبخیز دریاچه‌ها داشته است. تالاب ارژن با وسعتی حدود 22 کیلومترمربع به‌عنوان یکی از دریاچه‌های آب شیرین ایران از اهمیت ویژه‌ای برخوردار است. هدف اصلی این پژوهش بررسی تغییرات سطح آب تالاب ارژن و ارتباطش با تراز آب زیرزمینی با استفاده از تصاویر ماهواره‌ای و سیستم اطلاعات جغرافیایی است؛ برای رسیدن به این هدف با استفاده از کدنویسی در سامانۀ گوگل ارث انجنین و از طریق تصاویر ماهواره‌ای چندطیفی ماهواره‌ای لندست از سال 1986 تا 2018، نوسان‌های سطح آب تالاب ارژن در دورۀ زمانی مذکور استخراج شد. بررسی‌ها نشان‌دهندۀ نوسان‌های گسترده در طول بازۀ زمانی 1986 تا 2018 است به‌طوری که از 22/8 کیلومترمربع در سال 1986 به صفر کیلومترمربع در سال 2018 رسیده است. بیشترین تغییرات به‌دلیل کاهش ارتفاع آب دریاچه به‌ویژه در جنوب‌شرق و سواحل غربی تالاب ارژن است. بر اساس نتایج به‌دست‌آمده، بیشترین مساحت تالاب در سال 1989 (۷۸/۱۴ کیلومترمربع) بوده و از سال 2010 کاملاً خشک شده است. برای بررسی وضعیت آب‌های زیرزمینی از سری زمانی منتج از داده‌های ماهوارۀ گریس استفاده گردید که بر مبنای ضریب JPL (86% همبستگی) مشخص شد سطح آب زیرزمینی در آبخوان ارژن سیر نزولی طی کرده و حدود 20 سانتی‌متر کاهش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing the Relationship between Alterations in Groundwater Level and Physical Changes in Water Bodies: A Case Study of Arjan Wetland, Fars Province

نویسندگان [English]

  • Maryam Khosravian 1
  • Abuzar Nasiri 2
  • Rahman Zandi 1
  • Mahdi Zarei 3
1 Hakim Sabzevari University
2 Firoozabad Higher Education Center
3 Hakim Sabzevari University
چکیده [English]

Introduction: Considering the rapid changes occurring in natural phenomena of the earth and their considerable influence on human life throughout time, it is crucially important to thoroughly examine such changes so that one can better understand the natural and human processes involved in those changes. Monitoring and assessing the areas where the aforementioned changes occur are considered as important steps in national development and the management of natural resources. In this regard, remote sensing technology is uniquely applicable in collecting information concerning such phenomena, taking into account various advantages of multispectral satellite imagery, including their availability and interpretability. This study, therefore, sought to investigate the changes made in Arjan wetland using RS and GIS technology. To put it more precisely, the current study examined the changes that occurred in the wetland’s banks, the decline of the area covered by the wetland’s water, and the changes made in the earth’s surface temperature and groundwater level. Throughout the past few decades, remote sensing technology has widely been used by scholars to detect such changes over time. On the other hand, coastal areas, especially inland lakes, have received special attention as ecological environments.
 
Materials and Methods: This study used two types of data: meteorological data including precipitation, temperature (average, maximum, minimum), humidity, evaporation, and transpiration data, and remote sensing data, including the information collected from Landsat and MODIS images to calculate water indices and surface temperature. It should be noted that MODIS satellite images used in this study possessed low spatial resolution and high temporal resolution. Moreover, the NDWI was calculated for the study period (1968-2018) using coding in the google engine system. On the other hand, grace satellite imagery was used to estimate the alterations made in the groundwater level within the study area. Moreover, the data regarding the observed wells within the study area were used to validate the results and zone the aquifer’s water level. To determine the optimal position of the earth's surface and remove hydrological effects, the GRACE satellite (GLDAS model) was used.
 
Discussion and Results: Like other lakes, the Fars province’s lakes are completely dependent on the status of water resources in the related watershed. Having been dried up since 2013, Arjan seasonal wetland, where the water height reaches one meter during high water periods, is currently in critical condition. In winter and spring, the surplus water is stored in the surrounding plain due to the increase in the plain’s surface inflows and the limited irrigation capacity in its eastern part, turning the wetland into a lake.
 In this study, first, the area of ​​Arjan wetland was examined in terms of climatic parameters. While Arjan Wetland experienced lots of fluctuations throughout the study period (1986-2018), it could be argued that its main crisis started in 2010 when the area of ​​the lake was reduced to less than half, and finally became zero in 2013.
According to the obtained results, the wetland had its largest area in 1989 (14.78 square kilometers) when, based on data recorded at the meteorological station, the precipitation rate was 488 mm, which is regarded as one of the maximum precipitation rates throughout the study period. On the other hand, the time series data collected from the GRACE satellite and validated via Piezometric well’s data were used to examine the status of groundwater in the Arjan aquifer during the study period (1986-2018). The time period considered for the investigation of the changes that occurred in the aquifer was from 2003 to 2017. According to the data extracted from the GRACE satellite, the highest amount of groundwater decline occurred in 2018 by 20 cm. Also, the analysis of the general trend of changes shows that the decline rate is more than 8 cm per year.
 
Conclusion: The consequences of climate change may be exacerbated in different regions by human activities-induced changes in the climate and the drying up of inland continental lakes. As a climatic hazard, the drying up of lakes is a critical issue to be taken into account, the consequences of which, as shown in this study, will affect the climatic conditions of the region and even the surrounding areas.
 Arjan wetland is an Iranian seasonal lake with fresh water whose area has been declining in recent years due to climate change and reduced precipitation rate, getting totally dried up recently. As found in this study, the wetland has completely been dried up as a result of a significant decline in its area from 1986 to 2018. It was also found that the Arjan aquifer’s groundwater level has decreased by roughly 20 cm.

کلیدواژه‌ها [English]

  • Arjan Wetland
  • Level Change
  • Groundwater
  • Water Body
  • Remote Sensing
  1. Alesheikh, A., Ghorbanali, A. and Talebzadeh, A., "Generation the coastline change map for Urmia Lake by TM and ETM+ imagery", In Map Asia Conference, Beijing, China, 2004.
  2. Ayenew, T., 2004, Environmental Implications of Changes in the Levels of Lakes in the Ethiopian Rift Since 1970, Regional Environmental Change 4 (4): 192-204.
  3. Azabdaftari A. and Sunarb, F., "Soil Salinity Mapping Using Multitemporal Landsat Data. ISPRSInternational Archives of the Photogrammetry", Remote Sensing and Spatial Information Sciences, 39, 2016.
  4. Coskun, M. and Musaoglu, N., 2002, Invesigation of Rainfall-run off Modeling of the Van Lake Catchments by Using Remote Sensing and GIS Integration, ITU, Civil Engineering Factuly, Istanbul, Turkey. Available at: http://www.isprs.org/proceedings/xxxv/congress/comm7/papers/52.pdf.
  5. Dasarathy, V.; Nearest neighbor classification techniques; IEEE Computer Society, 1991.
  6. Duan, Z. and Bastiaanssen, W.G.M. (2013). Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data, Remote Sensing of Environment, Vol 134, P. 403-416.
  7. Elnaggar, A. A. and Noller, J. S., "Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas", Remote Sensing, 2 (1): 151-165, 2009.
  8. Faraj, Z. Kaviani, A. and Ashrafzade, A., 2017, "Evaluation of Grace satellite data in estimation of underground water level changes in Qazvin province", Journal of Ecology.
  9. Förste, C., Bruinsma, S., Flechtner, F., Marty, J.C., Dahle, C., Abrykosov, O., Lemoine, J.M., Neumayer, H., Barthelmes, F., Biancale R., and König, R. (2013) EIGEN-6C2—a new combined global gravity field model including GOCE data up todegree and order 1949 of GFZ Potsdam and GRGS Toulouse. In: Geophysical Research Abstracts, V. 15, EGU2013-4077-1, 2013, EGU General Assembly 2013.
  10. Guariglia, A., Buonamassa, A., Losurdo, A., Saladino, R., Trivigno, M. L., Zaccagnino, A. and Colangelo, A., 2006. A multisource approach for coastline mapping and identification of shoreline changes, ANNALS OF GEOPHYSICS, 49 (1): 295-304.
  11. Hashemi Tangestani, M., Beyranavnd, S. and Tayebi, M.H. (2013) Detection of change in Bkhtegan lake at time intervals from 1956 to 2007. Journal of Mohitshenasi, 39 (3): 189-199 (in Persian).
  12. Illesand T. M. and Kiefer, P.W, Remote sensing and image interpretation, John Wiley & Sons, Inc; USA 1994.
  13. Jensen J.R., Introductory digital image processing: A remote sensing perspective;e (Second Edition), Prentice-Hall, Upper Saddle River New Jersey, 316, 1996.
  14. Kaichang, D., Ruijin, M., Jue, W. and Ron, L., 2009. Coastal Mapping and Change Detection Using High-Resolution IKONOS Satellite Imagery, Japan-Ohio.
  15. Kish, S. A., 2002. A Remote Sensing and GIS Study of Long-Term Water Mass Balance Lake Jacson, College of Engineering Science Technology & Agriculture, Florida, U.S.A, GSA Annual Meeting, Hynes Convention Center, November 5-8.
  16. Kurt, S., Karaburun, A. and Demirci, A., 2010. Coastline changes in Istanbul between 1987 and 2007. Scientific Research and Essays, 5 (19): 3009-3017.
  17. Li, F., Wang, Z., Chao, N. and Song, Q. 2018. Assessing the Influence of the Three Gorges Dam on Hydrological Drought Using GRACE Data. Water. 10 (5): 669-686.
  18. Macleod, R. S and R. G. Congalton; a quantitative comparison of change detection algorithms for monitoring eelegrass from remotely sensed data. Photogrammetric and Remote Sensing of Environment,Vol. 8, 1998.
  19. Najafi, A., 2003. Investigation of the Snowmelt Runoff Orumiyeh-region Using Modeling GIS and RAtechniqes, International-Institute for Geo-information Science and Observation Enchede the Netherland.
  20. Pakparvar, M., Cornelis W., Pereira, L. S., Gabriels, D., HosseiniMarandi, H., Edraki, M. and Kowsar, S. A. 2014. Remote sensing estimation of actual evapotranspiration and crop coefficients for a multiple land use arid landscape of southern Iran with limited available data. Journal of Hydroinformatics 16 (6): 1441-1460.
  21. Rodell, M., Famiglietti, J. S., Devereaux, J. A. et al. 1999. "Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment". Water Resources Research, 35: 1839-1851.
  22. Rokni, K., Ahmad, A., Selamat, A. and Hazini, S., "Water feature extraction and change detection using multitemporal Landsat imagery", Remote Sensing, 6 (5): 4173-4189, 2014.
  23. Sima, S., Ahmadalipour, A. and Tajrishy, M. 2013. Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation, Remote Sensing of Environment, Vol 136, P: 374-385.
  24. Sima, S. and Tajrishy, M., 2013. Using satellite data to extract volume–area–elevation relationships for Urmia Lake, Iran, Journal of Great Lakes Research, Vol 39, P: 90–99.
  25. Singh, A., 1989, Digital Change Detection Techniques Using Remotely Sensed Data, International Journal of Remote Sensing 10 (6): 989-1003.
  26. Singh, A., Seitz, F. and Schwatke, C., 2012. Interannual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry, Remote Sensing of Environment, Vol 123, P: 187–195.
  27. Springer, A., Eicker, A., Bettge, A., Kusche, J., Hense, A. 2017. Evaluation of the Water Cycle in the European COSMO-REA6 Reanalysis Using GRACE. Water 9 (4): 289-313.
  28. Tajdarul, H., Syed James, S., Famiglietti, M., Rodell, J., Chen, C. and Wilson, R. 2008. Analysis of terrestrial water storage changes from GRACE and GLDAS. WATER RESOURCES RESEARCH. 44: 1–15.
  29. Tapley, B. D., Bettadpur, S., Watkins, M. and Reigber, C. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters. 31 (9).
  30. Tourian, M.J., Elmi, O., Chen, Q., Evaraju, B., Roohi, Sh. and Sneeuw, N., "A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran," Remote Sensing of Environment, No. 156, PP. 349-360, 2015.
  31. Trumpickas, J., Brian, S., Minns, J. and Charles, K., 2009. Forecasting impacts of climate change on Great Lakes surface water temperatures, Journal of Great Lakes Research, Vol 35: 454-463.
  32. Tucker, C. "Red and photographic infrared linear combinations for monitoring vegetation". Remote Sensing of Environment, Vol. 8. pp. 127-150, 1979.
  33. Upp D. L. B., Background and extensions to depth of penetration (DOP) Mapping in Shallow Coastal Proceeding of the Symposium on remote sensing of Coastal zone,Gold Coast,Queensland,September 1988, IV.2.1-IV.2.19, 1988.

Wahr, J., Molenaar, M. and Bryan F., 1998. Time variability of the Earth›s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. JGR Solid Earth. 103 (12): 30205-30229