تحلیل فراوانی و شدت وقوع سیل تحت سناریوهای تغییر اقلیم در حوزۀ معرف امامه

نویسندگان

1 دانشگاه تهران

2 سازمان تحقیقات آموزش و ترویج کشاورزی

‎10.22052/deej.2021.11.34.59

چکیده

یکی از مهم‌ترین پیامدهای تغییر اقلیم افزایش فراوانی و شدت رویدادهای حدی نظیر سیلاب‌های مخرب و خشکسالی‌های گسترده است. بنابراین بررسی رویدادهای حدی بارش و فراوانی آن طی دوره‌های گذشته و تأثیر تغییر اقلیم بر روند آن طی دوره‌های آتی ضروری است. در این مطالعه اثر تغییرات اقلیمی آینده بر سیلاب منطقۀ طرح با مدل CANESM2 بررسی شد. پیش‌بینی تغییرات اقلیمی تحت سناریوهای RCP2.6 و RCP8.5 و با استفاده از مدل ریزمقیاس‌نمایی SDSM 4.2.9 انجام شد. به‌منظور تحلیل فراوانی و شدت سیلاب با استفاده از مدل SMADA مناسب‌ترین توزیع بر اساس آزمون‌های RMSE و MSE انتخاب شد. پس از شبیه‌سازی سیلاب‌ها با استفاده از مدل HEC-HMS در شرایط تغییر اقلیم فراوانی و شدت سیلاب‌ها بررسی شد. نتایج نشان داد که دمای حداکثر در طول دوره‌های (20۱۱ـ20۵۵) و (2۰۵۶ـ2۱۰۰) تحت سناریوهای RCP2.6 و RCP8.5 به‌ترتیب 02/3، 27/3، 2/ و 47/5 درجۀ سانتی‌گراد و دمای حداقل در طول دوره‌ها و سناریوهای مذکور به‌ترتیب 62/0، 87/0، 1/1 و 82/2 درجۀ سانتی‌گراد افزایش می‌یابند. بر اساس نتایج حاصل از بارش برای منطقۀ مورد مطالعه در دوره‌های آتی روند مشخصی نشان نداد. نتایج نشان داد که توزیع پیرسون نوع سوم دارای کمترین خطا می‌باشد. فراوانی و شدت سیلاب‌ها در دوره‌های آتی افزایشی می‌باشد به‌طوری ‌که بیشترین افزایش آن‌ها در دورۀ دوم تحت سناریوی RCP8.5 به‌ترتیب مقدار 68/12 و 76/25 درصد بوده و از دورۀ بازگشت 2 ساله به 200 ساله بر تعداد دوره‌هایی که سیلاب‌های برآوردشده در آن‌ها نسبت به دورۀ مشاهداتی بیشتر است، اضافه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing the Floods' Frequency and Severity under Climate Change Scenarios: A Case Study of Emameh Watershed

نویسندگان [English]

  • Hassan Alipour 1
  • Ali Salajegheh 1
  • Alireza Moghaddamnia 1
  • Shahram Khalighi 1
  • Mojtaba Nassaji 2
1
2
چکیده [English]

Introduction: As an undeniable environmental phenomenon, climate change can be defined as a reversible change or variability in the average climate and its relevant variables, including the temperature, precipitation, humidity, climate patterns, wind, radiation, etc., which lasts for a long period of time. Located in a special geographical location that suffers from insufficient precipitation, Iran faces inappropriate distribution of rainfall temporally and spatially. On the other hand, the world seems to be facing new challenges in terms of water resources. Moreover, the most important consequence of the change in the hydrological cycle is the tendency toward extreme events ​​such as torrential rains, widespread droughts, and in some cases, regional wetlands. In this regard, it can be said that the frequency and severity of floods are among the terrible or deadly natural disasters brought about by climate change. Therefore, it is necessary to determine the best probability for the distribution of flood discharges, measure the best probability distribution for management and planning in cases where climate change occurs, and finally assess the frequency and severity of floods in Iran.

Materials and methods: To analyze the floods' frequency and severity under different climate change scenarios, the minimum and maximum values of precipitation and temperature were measured using the CanESM2 general circulation model under RCP2.6 and RCP8.5 climate change scenarios and the SDSM4.2.9 linear multiple regression downscaling model. Then, the collected precipitation data was processed and analyzed and the flood pattern was simulated for future periods via NetSTORM software (separating the rainfall from the hourly data). Moreover, the HEC-HMS model was used to simulate floods in basic and future periods. Accordingly, the SCS method, the Clark unit hydrograph method, and the Muskingum method were calibrated and evaluated to calculate the infiltration, convert the rainfall to runoff, and rout the river, respectively. Finally, to analyze the floods' frequency and severity, the probabilistic distribution function was fitted for the future periods' baseline data and propagation scenarios using the SMADA software for different statistical distributions (normal, two- and three-parameter log-normal, Pearson type III, Log-Pearson Type III and Gumbel), followed by the selection of the best-fit distribution model based on the RMSE and MSE tests.

Results: The results of the climatic model showed that under the RCP2.6 and RCP8.5 scenarios, the maximum temperature rate would increase in 2011-2055-and 2056-2100 by 3.02˚C, 3.27˚C, and 3.2˚C, and 5.47˚C, respectively. Furthermore, the minimum temperature rate would increase in the same periods by 0.62, 0.87, and 1.1 and 2.82 degrees Celsius, respectively. However, the monthly precipitation data did not reveal any specific trend throughout the future periods.

The Emamah watershed's data concerning the flood discharge and maximum daily precipitation rate during the study period (1999-2019) were used to select flood and pervasive events. The predicted data were then analyzed under RCP2.6 and RCP8.5 scenarios at five separate periods. Finally, the selected events' data were imported to the HEC-HMS model and simulated. After selecting the flood events with the highest magnitude compared to other events, they were decomposed into one-hour or fewer rainfall events using the NETSTORM model. Then the flood discharge values were calculated ​​for the base and future periods and their probabilistic distribution function was obtained through the SMADA software. Finally, the Pearson type III distribution, the best distribution among normal, two-and three-parameter lognormal, Pearson type 3, Log-Pearson Type 3, and Gamble distributions were selected for each base and future time series using the goodness-of-fit test.
According to the results of the best frequency distribution, flood values ​​were estimated with return periods of 2, 10, 25, 50, 100, and 200 years. Moreover, one third of the floods with a 2-year return period witnessed an increase in discharge rate compared to the base period. However, the discharge rate decreased or remained unchanged in floods with other return periods. On the other hand, floods estimated with 10 and 25-year return periods were increased in two-thirds of the periods, the highest increase of which occurred in the second period under the RCP8.5 scenarios by 12.68 and 25.76 percent, respectively. It should also be noted that the highest chances of increase in flood occurrence with a return period of 200 years belonged to the second period by 56.12% increase rate and 10.07 m2 discharge rate under the RCP8.5 scenarios.

Discussion and Conclusion: throughout the next hundred years, climate change would experience significant changes in precipitation patterns, leading to the risks of severe floods and droughts. Moreover, the results of the analysis and study of climate change indicated that the temperature increasing trend in the periods under the studied scenarios and that the biggest increase belonged to the RCP8.5 scenarios. It was also found that the temperature rate would increase more in the period 2056-2100 compared to the 2011-2055 period. However, the results of precipitation simulation under the scenarios did not show a definite trend for the future periods, with the precipitation increasing and decreasing in different months of the year. On the other hand, the simulation of basin floods for the future periods and the comparison of peak discharge values within the future and the observation periods indicated a change in the regime of river flood discharges. Accordingly, the maximum discharge rate increased in the constant returns period. Furthermore, the discharge rates significantly increased in the maximum constant flow period with an increase in the return period.

کلیدواژه‌ها [English]

  • Rainfall- Runoff Modeling
  • SDSM
  • Flood Frequency Analysis
  • Emameh Watershed
  • HEC-HMS
  1. H. 2000. Use of gamma distribution in hydrological analysis. Turkish Journal of Engineering and Environmental Sciences. 24(6): 419-428.
  2. P. and Soltani. S. 2017. Assessment of the climate change impacts on flood frequency (case study: Bazoft Basin, Iran). Stochastic Environmental Research and Risk Assessment. 31(5): 1171-1182.
  3. Azari, M., Moradi, H., Saghafian, B. and Faramarzi, M., 2013. Evaluation of hydrological effects of climate change in Gorganrood watershed. Journal of Water and Soil, 27 (3), 547-537. (In Parsian)
  4. D. H. 2008. Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. Journal of Hydrology. 352(1-2): 225-238.
  5. A. J. and Sidle. R. C. 1984. Prediction of peak flows on small watersheds in Oregon for use in culvert design. JAWRA Journal of the American Water Resources Association. 20(1): 9-14.
  6. Chen, Y. J., Lin, H. J., Liou, J. J., Cheng, C. T., and Chen, Y. M. 2022. Assessment of Flood Risk Map under Climate Change RCP8. 5 Scenarios in Taiwan. Water, 14(2), 207.
  7. Dastranj, A. 2012. Prediction of temperature and precipitation using general circulation models of climatic simulation atmosphere (study area of the northern half of the country), Department of Dry and Mountainous Regeneration, Faculty of Natural Resources, Sc. thesis, University of Tehran, 150 p. (In Parsian)
  8. Dosti, M., Habib Nejadroshan, M., Shahedi, K. And Mir Yaghoubzadeh, M. H., 2013. Investigation of Climatic Indices of Tamar Watershed, Golestan Province in Climate Change Conditions Using LARS-WG Model. Journal of Earth and Space Physics, 39 (4), 177-189. (In Parsian)
  9. Hejazizadeh, Z. and Parvin, N. 2009. A study of temperature and precipitation changes in Tehran during the last half century. Geography and regional planning, 1, 43-56. (In Parsian)
  10. Hejazizadeh, Z., Fattahi, A., Massah Bovani, A., and Naserzadeh, M. 2012., Assessing the effects of climate change on flood hydrography in future periods (Case study: Bakhtiari watershed). Iranian Journal of Geographical Association, 10 (34), 5-24. (In Parsian)
  11. Ho, M. K., and Yusof, F. 2013. Determination of best-fit distribution and rainfall events in Damansara and Kelantan, Malaysia. MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 43-52.
  12. R. N. 2001. Assessing the risk of climate change on the water resources of the Macquarie River Catchment. In Integrating Models for Natural Resources Management across Disciplines, issues and scales (Part 2), Modsim 2001 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand.
  13. Khoshraei, M. and Baoj Rezaei, Z., 2016. The effect of climate change on flood frequency in Kelardasht basin using a combination of K-nn algorithm and HadCM3 model. Journal of Soil and Water Knowledge, 26 (1/3), 221-211. (In Parsian)
  14. M. M. and Sadia. F. 2013. Determination of the best fit probability distribution for annual extreme precipitation in Bangladesh. European Journal of Scientific Research. 103(3): 391-404.
  15. Maghsood, F. F., Moradi, H., Massah Bavani, A. R., Panahi, M., Berndtsson, R., & Hashemi, H. 2019. Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios. Water, 11(2), 273.
  16. Mahdavi, M., 2005. Applied Hydrology. University of Tehran Press, Volume 2, Fourth Edition, Tehran, Iran.
  17. Malmir, P., Mohammad Rezapour, A., Sharif Azari, S. and Ghandahari, Gh., 2016. Investigation of the effects of climate change on the runoff of Gharahsoo basin using statistical microscale of HADCM3 model data and dynamic neural network. Journal of Water and Soil Conservation, 23 (3), 317-326. (In Parsian)
  18. Mansoori, B., Ahmadzadeh, H., Masahbovani, A., Murid, S., Delavar, M., and Lotfi, S., 2005. Investigation of the effects of climate change on water resources of Zarrinehroud basin using SWAT model, Journal of Water and Soil, 28 (6), 1203-1291. (In Parsian)
  19. Massah Bovani, A., and Murid, S. 2005. Effects of Climate Change on the Zayandehrood River in Isfahan. Agricultural Science and Technology and Natural Resources, 4 (9), 17-27. (In Parsian)
  20. Mirzaei, S., Vafakhah, M., Bisvajit, P., and, Alavi, J. 2020. Prediction and analysis of flood zone in the context of climate change based on CanESM2 model scenarios. Echo Hydrology, 7 (2), 551-562. (In Parsian)
  21. R. 2006. Regional precipitation climates of Iran. Journal of Hydrology (New Zealand). 13-27.
  22. ‎ I. 2002. A first-order analysis of the climate change effect on flood frequencies in a subalpine watershed by means of a hydrological rainfall–runoff model. Journal of Hydrology. 267(1-2): 65-73.
  23. J.E. and Sutcliffe. J. 1970. River flow forecasting through conceptual models, Part 1, A discussion of principles. Journal of Hydrology. 10: 282–290.
  24. D. Song. Y. I. and Roesner. L. A. 2013. Effect of the seasonal rainfall distribution on storm-water quality capture volume estimation. Journal of Water Resources Planning and Management. 139(1): 45-52.
  25. M.S. and Henebry. G.M. 2014. Projections of the Ganges – Brahmaputra precipitation -downscaled from GCM predictors. Journal of Hydrology. 517(1): 120–134. doi:10.1016/j.jhydrol.05.016.
  26. Pour Mohammadi, S., Dastarani, M. T., Massah Bovani, A., Goodarzi, M., Jafari, H. and Rahimian, M. H., 2017. Investigating the effects of climate change on river runoff and providing strategies to adapt to its effects; Case study: Tuyserkan watershed of Hamedan. Iranian Journal of Watershed Management Science and Engineering, 11 (37), 12-1. (In Parsian)
  27. Rostamizad, Gh., Khaligi Sigaroudi, Sh., and Mahdavi., M. 2013. Calibration of different methods for estimating rainfall losses in HEC-HMS model in order to simulate surface runoff (Case study: Kan Watershed). Journal of Rangeland and Watershed Management, 66 (3), 359-371. (In Parsian)
  28. Sanikhani, H., Din Pajooh, Y., Puryousef, S., Zamanzad Ghavidel, S., and Solati, B. 2013. Investigation of the effects of climate change on runoff runoff (Case study: Ajichai watershed in East Azarbaijan province). Journal of Water and Soil (Agricultural Sciences and Industries), 27 (6). 1234-1225. (In Parsian)
  29. S. and Lohpaisankrit. W. 2016. Flood hazard assessment under climate change scenarios in the Yang River Basin, Thailand. International Journal of Sustainable Built Environment. 6(2): 285-298.
  30. F. A. and Guven. A. 2014. Prediction of design flood discharge by statistical downscaling and General Circulation Models. Journal of hydrology. 517: 1145-1153.
  31. P. 2009. A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environmental Modeling Software. 24(3): 311-321.
  32. Zahebiun, B., Goodarzi, M. R., and Masah Bovani, A. 2010. Application of SWAT model in estimating basin runoff in future periods affected by climate change. Climatological Research, 1 (3), 45-60. (In Parsian)
  33. Q. Leng. G. Huang. M. 2018. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations. Hydrology and Earth System Sciences. 22(1): 305.
  34. H. Shamsudin. S. Harun. S. 2014. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theoretical and applied climatology. 116(1-2): 243-257.