تحلیل آماری بلندمدت روند خشکسالی هواشناسی استان اصفهان

نویسندگان

1 دانشگاه کاشان

2 دانشگاه تهران

10.22052/deej.2021.11.34.1

چکیده

خشکسالی هواشناسی یکی از بزرگ‌ترین بلاهای طبیعی است که وجود یک سیستم نظارت مؤثر برای تحلیل روند خشکسالی و کاهش اثرات آن نیاز ضروری است تا بتوان به‌کمک آن اقدام مؤثری برای مدیریت این بحران انجام داد. هدف از این پژوهش، تحلیل روند خشکسالی استان اصفهان با استفاده از داده‌های بارش ماهانه 10 ایستگاه همدیدی با طول دورۀ آماری 30 ساله (1990ـ۲۰۲۰)، شاخص معیار استاندارد (ZSI) در مقیاس‌های زمانی متفاوت و آزمون‌های ناپارامتری من-کندال، پتیت و سن می‌باشد. درمجموع نتایج آماری برای مقیاس‌های زمانی متفاوت شاخص ZSI نشان داد که در سطح 5% روند خشکسالی براساس آزمون من-کندال در 58% از ایستگاه‌ها، بر اساس آزمون پتیت در 81% از ایستگاه‌ها و بر اساس آزمون سن در 56% از ایستگاه‌ها روند معنی‌دار نزولی دارد. بارش ماهانه در هیچ ایستگاهی روند معنی‌دار ندارد. از تحلیل سری‌های زمانی در مقیاس‌های مختلف مشخص شد که سری زمانی‌های بلندمدت روند تغییرات خشکسالی را بهتر آشکار می‌کنند. بنابراین با توجه به نتایج روندیابی خشکسالی در استان اصفهان مشخص شد خشکسالی در استان با روند نزولی مواجه است. به نظر می‌رسد افزایش فراوانی خشکسالی و بروز خشکسالی‌های شدید بر اکوسیستم منطقۀ مطالعاتی و در نتیجۀ آن برخورداری از خدمات اکوسیستم‌ها تأثیر نامطلوب داشته باشد. در نتیجه، نیاز به سازگاری برای نفی تأثیرات دوره‌های خشک شدید مکرر در استان وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Long-Term Statistical Analysis of Meteorological Drought Trends in Isfahan Province

نویسندگان [English]

  • Abbas Ali Vali 1
  • Hadi Zarepour 1
  • Hamid Ghorbani 1
  • Seyed Javad Sadatinejad 2
  • Seyed Hassan Alavinia 1
1
2
چکیده [English]

Introduction: As one of the greatest natural disasters, meteorological drought has traditionally affected human life. Considering the fact that the consequences of drought and its socio-economic damages increase with increasing population, it is necessary to have an effective monitoring system to analyze the drought process and reduce its adverse effects, thereby taking effective measures to manage the crisis.

Materials and methods
The study area and data: This study was conducted in Isfahan province, located at latitudes of 30° 43' to 34° 27'N and longitudes of 49° 38' to 55° 32' E with an area of ​​107145 km2 (equivalent to 3.6 percent of the total area of ​​Iran), whose annual precipitation rate is 130 mm which is less than half the country's average rainfall rate and one sixth of the average global rate. This study used 30-year precipitation data collected from 10 meteorological stations and neighboring areas with appropriate statistical quality to investigate the drought indices of the Isfahan province.

Case Study Indicators: Trend analysis of precipitation and drought data plays a significant role in the future development and management of water resources. Therefore, this study sought to analyze the trends of meteorological droughts and monthly precipitation rate for the period of 1990-2020 extracted from 10 synoptic stations in Isfahan province, including Ardestan, East Isfahan, Golpaygan, Isfahan, KabootarAbad, Kashan, Khorobianbanak, Naein, Natanz, Shahreza. Moreover, to investigate the variability of the Z-Score Index (ZSI) for different time intervals, the ZSI values of all these stations were calculated at multiple scales of 1, 3, 6, 9, 12, 24 and 48 monthly scales, whose trends were analyzed for all stations by applying the non-parametric Mann–Kendall at 5% significance level. The magnitudes of the trends were also computed and tested using the Sen’s slope estimator method.

Results and discussion: It should be noted that the purpose of the Mann-Kendall test is to statistically assess the existence of monotonic upward or downward trend of the intended variable over time. A monotonic upward (downward) trend means that while the variable consistently increases (decreases) over time, the trend may be eighter linear or non-linear.
To identify a linear trend, the slope is usually estimated by computing the least squares estimates using linear regression. However, this is only valid when there is no serial correlation. Moreover, the least squares method is very sensitive to outliers. Therefore, as a robust method against those two least square assumptions, non-parametric Sen’s slope estimator was used to analyze ZSI Indices and detect the possible trend.
    Further trend analysis was also applied to detect possible single change-point using Pettitt’s test, which helped investigate significant abrupt changes in the level of time series at 5% significance level for all stations and different ZSI monthly scales. All statistical analyses were carried out via R statistical software and the facilities of its packages.

Discussion and Conclusion: The results of applying Mann–Kendall and Sen’s slope tests based on ZSI Index for 9, 12, 18, 24, and 48-month scales indicated that the drought trend was significantly increasing for all stations out of Esfahan and Shahreza stations. In Isfahan station, the drought trend was significantly decreasing in the 48-month scale, and in Shahreza station, the drought trend was significantly increasing in all time periods. Moreover, the results of Mann–Kendall and Sen’s slope tests for a one-month period revealed a is significantly increasing trend in terms of ZSI Index in Naein and KabootarAbad stations only. Furthermore, applying Mann–Kendall test on monthly precipitation rates of all stations showed an insignificant downward trend.
Finally, the results of the Pettitt’s change point test for 9, 12, 18, 24, and 48-month scales indicated the existence of a significant change point in terms of the ZSI Index. However, no change point was observed for all stations' monthly precipitation rates throughout the same periods.
In short, considering the ZSI drought index, it could be said about 58% of all stations showed significant downward trend according to the results of the Mann-Kendall test, 56% of all stations showed a significant slope trend according to the Sen's slope test, and 81% of all stations showed a significant change point according to the results of the Pettitt's test. In general, it could be argued that drought trends are better analyzed and displayed in terms of the ZSI index for over six-month periods, and that under six-month scale are unable to produce significant results.
Considering what discussed above, it should be reiterated that Isfahan province is facing a water crisis, requiring very urgent water demand management.

کلیدواژه‌ها [English]

  • Drought
  • Isfahan province
  • Mann-Kendall Test
  • Pettitt’s Change Point Test
  • Sen’s Slope Test
  • Z-Score Index
  • Trend Analysis
  1. Alashan, S., 2020. Combination of modified Mann‐Kendall method and Şen innovative trend analysis. Engineering Reports, 2(3), p.e12131.
  2. Bayissa, Y., Moges, S., Melesse, A., Tadesse, T. and Abiy, A. Z., Worqlul, A., 2021. Multi-Dimensional Drought Assessment in Abbay/Upper Blue Nile Basin: The Importance of Shared Management and Regional Coordination Efforts for Mitigation, j remote sensing, 13, 1835. https://doi.org/10.3390/rs13091835
  3. Bazrafshan, J., 2002. A comparative study of several meteorological drought indices in some climatic zones of Iran. Sc. Thesis, University of Tehran, Faculty of Agriculture, Agricultural Meteorology Group, 23-36 (In Persian).
  4. Boustani, A. and Ulke, A., 2020. Investigation of Meteorological Drought Indices for Environmental Assessment of Yesilirmak Region, Journal of Environmental Treatment Techniques, Volume 8, Issue 1, Pages: 374-381.
  5. Cai, G., Chen, S., Liu, Y., Sun, H., Chen, C., Gui, D. and Yan, D., 2020. Using multiple indexes to analyze temporal and spatial patterns of precipitation and drought in Xinjiang, China, Journal Theoretical and Applied Climatology ,142(5895).
  6. Darroudi, H., Khosroshahi, M. and Shahabi, M., 2021. Analysis of drought and climatic factors trend variations in Sistan and Baluchestan Province. Desert Ecosystem Engineering Journal, pp.3-4 (In Persian).
  7. De Lasme, O. Z., Koffi, A. S. and Cedric, D. G., 2020. Assessment of Groundwater Resource in Climate Variability Context at Sinematiali (North of Côte d'Ivoire), European Journal of Environment and Earth Sciences, Vol 1(5), DOI: 10.24018/ejgeo.2020.1.5.73.
  8. De Martonne, E. 1926. L'indice d'aridité. Bulletin de l'Association de géographes français, 3: 3-5.
  9. D. and Pandy, A., 2013. Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research, 122: 136-149.
  10. Eivazi, M., Mosaedi, A. and Dehghani, A. A., 2009. Comparison of different approaches for predicting SPI. Journal of Water and Soil Conservation, Vol. 16(2), 145-167 (In Persian).
  11. Ensafi Moghaddam, T., 2007. An Investigation and assessment of climatological indices and determination of suitable index for climatological droughts in the Salt Lake Basin of Iran. Iranian journal of Range and Desert Research, Vol. 14, No. 2, 277-288 (In Persian).
  12. Fazel Dehkordi, L., 2013. Drought risk warning for optimal rangelands management. PhD. Thesis, University of Tehran. Pp: 397 (In Persian).
  13. Fazel Dehkordi, L., Sohrabi, T. S., Ghanavizbaf, M. H. and Ghazavi, R., 2016. Drought Monitoring by Using of MODIS Satellite Images in Dry Lands (Case study: Isfahan Rangelands). Journal of Geography and Environmental Planning, Vol 27, No. 3, Ser No. (63), 176-190 (In Persian).
  14. Villarini, G., Serinaldi, F., Smith, J. A. and Krajewski, W. F., 2009. “On the stationarity of annual flood peaks in the continental United States during the 20th century,” Water Resources Research, Vol. 45, No. 8, article W08417.
  15. Gilbert, R. O., 1987. Statistical methods for environmental pollution monitoring. New Van Nostrand Reinhold, New York, 320 pp.
  16. Jain, S.K. and Kumar, V., 2012. Trend analysis of rainfall and temperature data for India. Current Science, 102 (1), 37–49.
  17. Jemai, S., Kallel. A. and Abida, H., 2018. Drought distribution using the standard precipitation index: case of Gabes Basin, South Tunisia, Arabian Journal of Geosciences, Vol. 11(23), pp: 1- 31.
  18. Karpouzos, D. K., Kavalieratou, S. and Babajimopoulos, C., 2010. Non- parametric trend analysis of precipitation data in Pieria Region basin Ethiopia. Physics and Chemistry of the Earth, v. 61-62, p. 32-42.
  19. Kendall, M. 1975. Rank Correlation Methods. Griffin & Co, London: ISBN 0-85264-199-0.
  20. Khoshravesh, M., Mirnaseri, M. and Pesarakloo, M., 2017. Change Detection of Precipitation Trend of Northern Part of Iran using Mann-Kendall Non-Parametric Test. Journal of Watershed Management Research, 8(16 ): 223-231 (In Persian).
  21. Kousari, R. M., Ekhtesasi, M. R. and Maleikenzhad, H., 2017. Investigation of meteorological and agricultural drought trends in hyper-arid, arid and semi-arid regions of the world. Journal of Desert Ecosystem Engineering, 6(14), 91-105 (In Persian).
  22. Majidi, A. Radfar, A., Mirabbasi, M., Najafabadi, R. and Marofi, S., 2018. Trend Analysis of Meteorological Drought Characteristics in Hamedan Province. Journal of Watershed Management research, Vol. 9, no. 17, 295-305 (In Persian).
  23. Mann, H., 1945. Non-Parametric Tests against Trend. Econmetrica, 13: 245-259.
  24. Masoudian, A., 2011. The Weather of Iran. Sharie Toos, Mashhad, Iran. (In Persian).
  25. Meteorological Organization of the country., 2021. Meteorological Calendar of Isfahan Province. 31-149 (In Persian).
  26. Mirzaei, A. A. and Sabe, Gh. A., 2015. Water engineering specialized software. Kian Academic Publication, Tehran, Iran. (In Persian).
  27. Mishra, A. K, and V. P. Singh. 2010. A review of drought concepts. Journal of Hydrology, 391: 202-216.
  28. Moradi Dashtpagerdi, M., Kousari, M. R., Vagharfard, H., Ghonchepour, D., Hosseini, M. E. and Ahani, H., 2014. An investigation of drought magnitude trend during 1975–2005 in arid and semi-arid regions of Iran. Environmental Earth Sciences 73, 1231-1244. (In Persian).
  29. Nasserzadeh M. H. and Ahmadi E., 2012. Investigating the Performance of Meteorological Drought Indicators in Drought Evaluation and its Zoning in Qazvin Province, Journal of Applied Geographical Sciences, Vol. 12, No. 27, 141-162 (In Persian).
  30. Patel, N. R., Chopra, P. and Dadhwal, V. K., 2007. Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorological Applications, 14: 329-336.
  31. Pettitt, A. N., 1979. A non-parametric approach to changepoint problem, Applied Statistics, vol. 28, no. 2, pp. 126–135.
  32. Rajabi, M., Moradi, H. R. and Farajzadeh, M., 2005. Investigating the relationship between severity, duration and frequency of meteorological droughts in Fars province. International Conference of Earth Hazards, Natural Disasters and Strategies to Deal with Them, University of Tabriz, Tabriz, Iran (In Persian).
  33. Rahmat, S.N., Jayasuriya, N. and Bhuiyan, M., 2012, November. Trend analysis of drought using standardised precipitation index (SPI) in Victoria, Australia. In Hydrology and Water Resources Symposium (p. 441).
  34. Rouge, C., Ge, Y., and Cai, X., 2013. “Detecting Gradual and Abrupt Changes in Hydrological Records,” Advances in Water Resources, Vol. 53, pp. 33–44.
  35. Zakeri, S., Samkhaniani, A., Adeli, S. and Nikraftar, Z., 2019. Evaluation Of Long Term Trend Of Different Drought Indices Using Mann-Kendall And Sen’s Slope Estimator Over Iran, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran (In Persian).
  36. Montazeri, M., Gandomkar, A. and Momeni, M., Salehvand, I., 2015. Evaluation of Meteorological Drought Index for Drought Assessment and Mapping in Lorestan Province in Iran, Journal of Geography, Environment and Earth Science International, 2(1): 24-36 (In Persian).
  37. Sharma, A. and Goyal, M. K., 2020. Assessment of drought trend and variability in India using wavelet transform, Journal Hydrological Sciences, Vol. 65, No. 9, pp. 1539-1554, DOI: 10.1080/02626667. 2020. 1754422.
  38. Soltani, S. and Modares, R., 2006. Investigation and Analysis of the Severity and Frequency of Meteorological Drought in Isfahan Province, Journal of Natural Resources Research, No. 1, Volume 59: 26-16.
  39. Thiel, H., 1950. A Rank-invariant Method of Linear and Polynomial Regression Analysis, Part 3. Proceedings of Koninalijke Nederlandse Academic van Weinenschatpen A, 53: 1397-1412.
  40. Tome, A. R. and Miranda, P. M. A., 2004. “Piecewise linear fitting and trend changing points of climate parameters,” Geophysical Research Letters, vol. 31, no. 2, p. L02207.
  41. Yue, S., Pilon, P. and Cavadias, G., 2002. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259 (1–4), 254–271. Doi: 10.1016/S0022-1694 (01)00594-7.
  42. Zablon, W. Sh., Ongoma, V. and Njagi, M., 2019. Applicability of Combined Drought Index in drought analysis over North Eastern Kenya, journal Natural Hazards, Vol. 99, Issue 1, pages 379–389, DOI: 10.1007/s11069-019-03745-7.
  43. Zarei, A. R. and Eslamian, S., 2017. Trend assessment of precipitation and drought index (SPI) using parametric and non-arametric trend analysis methods (case study: arid regions of southern Iran), Journal Hydrology Science and Technology, Vol. 7, No. 1.