ناحیه‌بندی اقلیمی حوضۀ آبریز بیابانی ‌هامون هیرمند با استفاده از تحلیل خوشه‌ای و ممیزی

نویسندگان

1 موسسه تحقیقات جنگلها و مراتع کشور

2 دانشگاه زنجان

3 دانشگاه تبریز

10.22052/deej.2021.11.34.21

چکیده

افزایش روزافزون داده‌های اقلیمی و نیاز به شناخت ویژگی‌های نواحی اقلیمی، بر پیچیدگی مطالعات اقلیمی افزوده است. استفاده از روش‌های طبقه‌بندی چندمتغیره برای تسهیل این پیچیدگی‌ها ابزاری راهگشاست. در این تحقیق اقلیم حوضۀ آبریز بیابانی ‌هامون هیرمند با استفاده از 9 پارامتر اقلیمی و به‌کارگیری روش‌های تحلیل خوشه‌ای و تحلیل ممیزی طبقه‌بندی شد. اعمال تحلیل ممیزی، صحت انجام تحلیل خوشه‌ای را مورد تأیید قرار داده و در بیش از 90% سطح حوضه با نتایج تحلیل خوشه‌ای منطبق است. اختلاف موجود در نواحی اقلیمی در مرزهای این نواحی بوده و برای رفع این مشکل از احتمال پسین یاخته‌های مشکوک استفاده و یاخته‌های مذکور به گروه‌های واقعی خود منتسب شدند. نتایج حاکی از وجود 5 ناحیۀ اقلیمی در محدودۀ مورد مطالعه است: 1. ناحیۀ بارش متوسط، وزش باد آرام و کم گردوغبار؛ 2. ناحیۀ کم‌بارش، گرم، پرگردوغبار با وزش باد تند؛ 3. ناحیۀ بسیار پربارش با دمای کم، کم گردوغبار با وزش باد آرام؛ 4. ناحیۀ پربارش با دمای کم و گردوغبار متوسط؛ 5. ناحیۀ بسیار کم‌بارش، بسیار گرم، پرگردوغبار با وزش باد تند. بررسی تغییرات مساحت نواحی تعیین‌شده طی سه دهه نشان داد که از سطح نواحی پربارش کاسته شده که حاکی از غلبۀ شرایط خشکی به‌سمت دوره‌های اخیر در حوضه است. افزایش مساحت ناحیۀ کم‌بارش- بسیارگرم و پرگردوغبار با وزش باد تند نشان‌دهندۀ پیشروی مناطق گردوغبارخیز در حوضه است. شناخت و آگاهی نسبت به ویژگی‌های اقلیمی غالب هر بخش از حوضۀ برنامه‌ریزان و تصمیم‌گیرندگان منطقه‌ای را در اولویت‌بندی عملیات اجرایی و سازگاری با شرایط اقلیمی بخش‌های مختلف این حوضۀ بیابانی یاری می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Climatic zoning of Hamoon Helmand desert catchment using by Cluster analysis and auditing

نویسندگان [English]

  • Fatemeh Dargahian 1
  • Mehdi Doustkamian 2
  • Saeedeh Ashrafi 3
1
2
3
چکیده [English]

Introduction: The diversity of climatic elements and their Spatio-temporal behavior make the mixed study of climatic elements a difficult, complex, and time-consuming task. On the other hand, in studies conducted on space in more stations or cells, the complexity and difficulty of the study increases. In such cases, data classification can be helpful. The application of classification methods in climatology has begun since the early twentieth century. The weakness of traditional methods of climatic classification in the presentation of climatic facts led researchers to use multivariate statistical techniques for climatic classification which uses a variety of variables to classify climates. However, computational tools minimize the probability of error in the voluminous, complex, and time-consuming calculations involved in multivariate classification methods.
Hamoon Helmand catchment has unique climatic features such as Sistan's 120-day winds and severe dust storms. In different parts of this basin, different climatic parameters have different intensities and weaknesses, leading to the creation of different climatic zones in this catchment area with their own unique conditions. Recognition of these zones and the changes in their area​​ over the last three decades could help planners and decision-makers in the integrated management of the Hamoon Helmand desert watershed.

Materials and methods: Considering the small number and high dispersion of synoptic stations that have all the desired climatic parameters of the intended climatic zoning with a suitable statistical period, this study used the relevant data collected by nearby synoptic stations. To conduct climatic zoning of Hamoon catchment, the data concerning the average, minimum, and maximum temperature parameters, average, minimum, and maximum humidity, precipitation, wind, and dust was used for the statistical period 1989 to 2018. Climate analysis and audit analysis methods were also used for climatic zoning of the Hamoon catchment area.
Cluster analysis is a widely used method for multivariate data analysis. It is primarily used in situations where the target, i.e., the class classification, is an example of n person (item) with p attribute. In this process, similar people are placed in the same group. In this method which helps identify real groups and reduces the volume of data, classification is done based on similarities or distances.
As a multivariate technical analysis, that deals with separating distinct sets of objects (or observations) and assigning new objects (or observations) to previously defined categories, audit analysis ultimately seeks to create a linear combination between variables used for group individuals, turning a complex multivariate problem into a simple mono-variable statistical problem. Since the application of the audit analysis method requires prior knowledge of the number of groups, it can be used to test the clusters obtained from cluster analysis. Therefore, this study used the audit analysis method to test the competence of cluster analysis for grouping.

Results: According to the results of climatic analysis on five climatic zones, dendrograms were identified for the Hamoon catchment. To investigate the changes in these areas during three 10-year climate periods, the area of ​​each zone was studied and analyzed based on cluster and audit analyses.

The zoning of climatic elements of the first period which was conducted based on cluster analysis indicated that the northern and western parts of the basin were heavily rainy, both of which are low dust areas with a low temperature. Next to this zone, towards the central part of the basin, there was a rainy area with a relatively low temperature and moderate dust. The south of the basin was a low dust area with a moderate rainfall rate. The eastern part of the basin was a very hot and dusty area with a very low rainfall rate, 72.22 days of annual dust, and extreme wind speed. Moreover, the investigation of climatic zoning in the second period showed that the northern part of the basin is a very rainy zone with a significantly lower area than that of the first period. In addition, the precipitation rate was 112.4 mm in this area during the second period which was 54 mm lower than that of the first period.
The central part of the basin was located in a dusty area with a low rainfall rate, ranking second in terms of dust and wind speed. The area of this zone (low rainfall) has decreased by 3.8% compared to its area in the first period, with part of it turning into a very low-rainfall area and another part into an area with moderate rainfall. The northern part of the basin is located at a high rainfall area with 153.2 mm annual precipitation, showing a 41 mm increase compared with the second period and a 14 mm reduction compared to the first period. Moreover, the area of ​​this zone has decreased compared to the first and second periods, indicating the movement of the basin towards the mainland.


Conclusion: The results obtained from the climatic zoning of the Hamoon catchment area indicated the existence of five climatic zones in the study area: 1. Moderate rainfall area with gentle wind and low dust; 2. A hot, highly dusty, and low rainfall area with strong wind speed; 3-  A highly dusty, low-rainfall area with low temperature -  and moderate wind speed; 4- A high-rainfall, moderately dusty area with low temperature; and 5- A very dusty, very hot, and very low-rainfall area with strong wind speed. The analysis of changes in the area of ​​designated zones during three decades (the study period) in a complete climatic period showed a reduction in the number of rainfall areas and an increase in the number of low rainfall areas, indicating the prevalence of drought conditions in the basin within the recent periods. Therefore, it could be concluded that awareness of the prevailing climatic characteristics of each part of the basin helps regional planners and decision-makers prioritize executive operations and adapt themselves to the climatic conditions of different parts of this desert basin.

کلیدواژه‌ها [English]

  • Climatic Zone
  • Cluster analysis
  • Audit Analysis
  • Hamoun Watershed
  1. Almazroui, M., Dambul, R., Nazrul Islam, Md., Jones, P.D., 2015. Atmospheric circulation patterns in the Arab region and its relationships with Saudi Arabian surface climate: A preliminary assessment, Atmospheric Research. 161: P 36–51.
  2. Ashrafi, S., 2010. Zoning of rainfall in northwestern Iran using cluster analysis and audit analysis methods, Journal of Climatological Research, 1 (3): 27-44. Ashrafi, S., 2013. Zoning of Significant Cycles of Super Heavy Rainfall in Sistan and Baluchestan, Journal of Geographical Thought, 7 (13): 118-136.
  3. Asakereh, H., Torkarani, F., Ashrafi, S., 2014. The Zoning of Conditional Probability of Precipitation Conditions to Temperature Conditions in Iran, Geographical Research Quarterly, 36(136), 73-86.
  4. Burrows, D. A., Ferguson, C. R., Campbell, M. A., Xia, G., & Bosart, L. F., 2019. An objective classification and analysis of upper-level coupling to the Great Plains low-level jet over the twentieth century. Journal of Climate, 32(21), 7127-7152.
  5. Catto, J. L., 2016. Extratropical cyclone classification and its use in climate studies. Research of Geophysics, 54(2), 486-520.‏
  6. Daran, M., Amanollahi, J., Karimi, S., 2017. Classification of air masses of Urmia synoptic station using cluster analysis and intragroup diffraction quality control indices. Irrigation Science and Engineering, 40(2), 183-198.
  7. Dargahian, F., Lotfi Nasab Asl, S., 2020. Identifying the trend of climate change in watersheds leading to dust centers in Khuzestan province (Karun, Karkheh and Zohreh-Jarahi). Journal of Rangeland and Desert Research, 27 (2), 300-320.
  8. Entezari, A., Dadashi Roodbari, A.A. 2014. Central Iran Climate Zoning by Multivariate Statistical Methods, First National Conference on Geography, Tourism, Natural Resources and Sustainable Development, Tehran, Iran.
  9. Fallah, Gh., Asadi, M., Entezari, A. 2015. Multilevel Climate Climatology of Guilan Province, Journal of Geography and Planning, 19(54): 235-251.
  10. Heydari, H., Alijani, B., 2008. Climatic Classification of Iran Using Multivariate Statistical Techniques in Geographical Research Bulletin, 37 pp.74-57.
  11. Huth, R., Beck, C., & Kučerová, M. 2016.Synoptic‐climatological evaluation of the classifications of atmospheric circulation patterns over Europe. International Journal of Climatology, 36(7), 2710-2726.
  12. Khan, S., 2019. Climate classification of Pakistan. International Journal of Economic and Environmental Geology, 10(2), 60-71.‏
  13. Khosravi, M., Aramash, M., 2012. Climatic Zoning of Markazi Province Using Factor-Cluster Analysis, Geography and Environmental Planning, 23(2), 87-100.
  14. Khosravi, M., Dostkamian, M., Mirmousavi, S.H., Bayat, A, Beyg Rezaei, E., 2014.Temperature and precipitation classification in Iran-land using geostatistical methods and cluster analysis. Journal of Regional Planning, 4 (13), 121-132.
  15. Kozjek, K., Dolinar, M., & Skok, G. 2017. Objective climate classification of Slovenia. International Journal of Climatology, 37, 848-860.
  16. Masoudian, S. A 2003. Climatic Areas of Iran, Journal of Geography and Development, 1(2): 171-
  17. Masoudian, S. A., 2009. Rainy Areas of Iran. Geography and Development, 13 (7), 91-79.
  18. Mohammadi, B., Masoudian, S.A.,   Relationship between synoptic types of air in Sanandaj station with circulating patterns at the level of 500 hPa. Geography and Regional Development, 5 (9), 39-56
  19. Montazeri, M., Bay, N., 2012. Caspian Zone Clustering Using Multivariate Statistical Methods in Geographical Research, 27(2), 77-90.
  20. Movahedi, S., Heidari, B., Hashemi, S.K., Ranjbar, F. 2011. Khuzestan Province Climatic Zone, Ahar Geography Journal, 12(40): 64-73.
  21. Montazeri, M., Fanei, R. 2018. Identification of Snowfall Areas in Iran using Cluster Analysis. Journal of Natural Environmental Hazards, 7(16), 241-258.
  22. Nadi, M., Khalili, A., 2013. Classification of precipitation climate in Iran by factor-cluster analysis, Iranian Soil and Water Research, Volume 44, Number 3, pp. 244-237.
  23. Rezapour, M., Baldock, T., 2014. Classification of Hurricane Hazards: The Importance of Rainfall, Weather and Forecasting, 29, 1319-1331.
  24. Salikheh, M., Narimani, F., Esmaeil Nejad, M. 2008. Climatic Zoning of Sistan and Baluchestan Province Journal of Geography and Development, 6(12): 101-116
  25. Shi, J., Yang, L. 2020. A Climate Classification of China through k-Nearest-Neighbor and Sparse Subspace Representation. Journal of Climate, 33(1), 243-262‏.
  26. Tavousi T., Shojaei, F., Asgari. E. 2019. Revision of North East Iranian Climatic Zones Based on Integrated Use of Drought Index Change, Journal of Desert Management, 7 (13), 117-134.