کاربرد منطق فازی در تحلیل کمی راهبردهای مقابله با بیابان‌زایی با رویکرد آسیب‌شناسی

نویسنده

دانشگاه آزاد واحد تاکستان

10.22052/deej.2021.11.34.11

چکیده

مبارزه با بیابان‌زایی مستلزم ارزیابی و پایش نوع و شدت تخریب اراضی، تعیین علل تخریب اراضی رخ داده و انتخاب و اعمال اقدامات مناسب برای مقابله با این مشکل است. از طرفی از آنجا که بیابان‌زایی یک مشکل تکنولوژیکی ساده نیست بلکه یک مسئلۀ اقتصادی‌اجتماعی پیچیده است که حاصل عملکرد و برهم‌کنش میان عوامل متعددی است که همیشه در محیط‌های غیرقطعی و تحت‌تأثیر شدید قضاوت‌های مبهم و غیرصریح قرار می‌گیرند، همواره خلأ روشی که بتواند معیارها و راهکارهای مختلف‌ را در نظر بگیرد و از آن میان بر مبنای ساختاری سیستماتیک و دیدگاه گروهی، راه‌حل‌های بهینه و قابل استناد را ارائه دهد، مشهود است؛ ازاین‌رو مقالۀ حاضر با هدف تلفیق تئوری فازی و روش‌‌های تصمیم‌گیری چندشاخصه به‌منظور ارزیابی راهبردهای مقابله با بیابان‌زایی به‌صورت موردی در دشت یزد- خضرآباد طی سال ۱۳۹۸ تا ۱۳۹۹ شکل گرفت و در این راستا از مدل دیماتل فازی استفاده شد. بر این مبنا در ابتدا با تشکیل ماتریس تصمیم‌گیری فازی، شدت اثر یا میزان اثرگذاری و اثرپذیری اوزان معیارها و راهبردها برآورد شد و پس از فازی‌زدایی و تشکیل نمودار علّی فازی، راهبردهای نهایی مورد ارزیابی و تحلیل قرار گرفت. بر مبنای نتایج حاصل‌شده، از دیدگاه مدل ارزیابی دیماتل فازی، راهبردِ جلوگیری از تبدیل و تغییر نامناسب کاربری اراضی (18A) با شدت تأثیر و تأثر  (903/0= Di+Ridef ) و تعدیل در برداشت از منابع آب زیرزمینی (31A) با شدت تأثیر و تأثر (367/0=Di+Ridef )، تأثیرگذارترین راهبردها به‌منظور دستیابی به هدف ارزیابی شدند. بنابراین پیشنهاد شد که در طرح‌های مقابله با بیابان‌زایی در منطقۀ مطالعاتی، نتایج به‌دست‌آمده مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Applying Fuzzy Logic in Quantitative Analysis of Strategies Adopted for Combating Desertification Using Critical Analysis Approach

نویسنده [English]

  • Mohammad Hassan Sadeghi Ravesh
چکیده [English]

Introduction
As desertification is growing rapidly, adopting appropriate managerial strategies could help reduce its extension and prevent its development and spread. Otherwise, the loss of resources such as time, energy, etc., would bring about destructive consequences for the efforts made to combat desertification. On the other hand, the process of land desertification results from the interactions between various factors that always operate under uncertain conditions, being strongly influenced by vague and implicit judgments. However, no comprehensive method has been introduced yet to offer operational and reliable solutions for evaluating the strategies used for combating desertification based on a systematic collective fuzzy approach. Therefore, this study sought to combine the fuzzy theory with multi-criteria decision-making methods to evaluate the strategies used in combating desertification, using the Fuzzy DEMATEL method.

Materials and methods: The fuzzy DEMATEL technique is a comprehensive method for creating and analyzing a structural model made out of causal relationships between a variety of complex factors under uncertain conditions. Accordingly, after determining the prioritized criteria and strategies via the fuzzy Delphi method and creating a fuzzy mean pair-wise comparison matrix, the matrix was changed to the normalized initial direct-relation matrix  according to equation 1:
xij=zijr=lijr,mijr,uijr                                                                 (1)
Then the mass communication matrix was formed by Eq. 2 (Table 1), showing the relative effect of direct and indirect relationships in a system.
             T=limk→∞X+X2+…+XK                                                 (2)
Table (1): Fuzzy Mass Communication Matrix




Di

   



D1
t k1nk-1

t k12
t K11

Tij =


D2
   t k2nk-1

t k22
t k21


׃
׃
׃
׃
׃


Dn
t knknk-1

t knk2
t knk1



Rn

R2
R1
Ri


tij=lij",mij",uij"





In the fuzzy mass communication matrix, the sum line (Di) indicates the extent of that factor's influence on other system's factors and its corresponding sum column (Ri) suggests the intensity of the influence of other system's factors on that factor. Therefore, Di+Ri  determines the total mutual impact of the desired factor and other system's factors on each other, and Di-Ri  shows the extent of each factor's final effect (only the effect) on all other system's factors.
Then, the Di+Ri  and Di-Ri  were de-fuzzed according to Eq.3 to facilitate the analysis of the findings.
(3)                      BNP=lij+uij-lij+mij-lij3
                                                                                                                                   
Finally, a causal diagram (cause and effect) including a Cartesian coordinate system was drawn, with its horizontal and vertical axes being graded based on Di+Ridef  and Di-Ridef  values, respectively. Di+Ridef is the total de-fuzzed cause and effect, and Di-Ridef is the extent of the de-fuzzed effect. Moreover, the position of each existing strategy was determined within the system according to a point whose coordinates were (A: Di+Ridef , Di-Ridef ). In this system, the points above the horizontal line indicate the effect strategies and vice versa, and the points to the right of the vertical line suggest the cause strategies and vice versa (Fig. 1).


Figure (1): The causal diagram and the display of strategies

Results: According to the related literature, first, the matrix of the order of criteria's influence on each other, and the matrices of the order of strategies' influence on each other were created in terms of the goal and each criterion, respectively, finding that that the effective strategies differed based on each criterion. Therefore, to select final strategies and grade their impact, the matrix of the order of strategies' influence on each other was formed in terms of total criteria within the group.
Table (2): The matrix of the order of influence of strategies on each other in terms of total criteria




Di-Ridef
Di+Ridef
Di-Ri
Di+Ri
Di  
 Ri
Alternatives


-1.252
-0.098
-1.887, -0.956, -0.912
-0.480, -0.31, 0.496
-0.625, -0.633, -0.767
0.145, 0.323, 1.262
A23


1.646
0.903
1.110, 1.515, 2.313
0.406, 0.695, 1.607
0.776, 1.105, 1.942
-0.371, -0.410, -0.335
A18


-1.011
-0.444
-0.548, 1.058, -1.427
-0.075, -0.305, -0.954
-0.421, -0.681, -1.081
0.346, 0.376, 0.127
A33


-0.271
-0.078
-0.186, -0.264, -0.364
0.034, -0.123, -0.145
-0.121, -0.194, -0.209
0.155, 0.070, 0.064
A20


0.889
0.367
0.480, 0.763, 1.421
-0.019, 0.197, 0.922
0.324, 0.480, 1.078
-0.343, -0.283, -0.156
A31





Finally, the causal diagram (cause and effect) was drawn based on Table 2 (Fig. 2) to better interpret the results.

Figure (2): The diagram of cause and effect (causal) strategies to combat desertification based on total criteria
Discussion and Conclusion: According to the study's results, "appropriateness and compatibility with the environment" (C7) with the intensity effect of Di-Ridef=0.874  were the most important criteria based on the Fuzzy DEMATEL perspective, followed by "Destruction of resources, and environmental and human damages" (C16), "Specialized human resources" (C6), "Scientific and technological tools" (C5), and "time”, with their effect intensity  Di-Ridef being 0.802 , -132 , -630, and -0.914, respectively, indicating the experts' concerns for the environmental issues and the existing challenges in terms of the destruction of the environment.

Based on the above-mentioned criteria, "preventing inappropriate land-use change" (A18) with the intensity effect of Di+Ridef=0.903  is definitely the most effective strategy to achieve the goal. Moreover, in terms of increasing cause and decreasing effect, other strategies were found to be "Reduction in extracting water from groundwater resources"(A31), " Controlling livestock grazing "(A20), "Developing and restoring the vegetation" (A23), "Changing the irrigation pattern and implementing less water-consuming methods "(A33), whose intensity effect Di+Ridefwas 0.903 , -0.078, -0.098 , and -0.444, respectively . Therefore, it is suggested that the results of this study be considered in the plans devised to control and reduce the consequences of desertification and land restoration in the study area. In fact, the current study's findings enable the managers working in desert areas to use limited facilities and assets available to them to effectively control the desertification process, prevent the loss of national assets, and achieve better results. 

کلیدواژه‌ها [English]

  • Causal Diagram
  • Fuzzy DEMETAL Method
  • Hierarchical structure
  • multi-criteria decision making
  • Pair-wise Comparison
  1. Abdullah, L., Zulkifli, N., Liao, H.,  Herrera-Viedma, E., Abdullah Al-Barakati, A., 2019. An interval-valued intuitionistic fuzzy DEMATEL method combined with Choquet integral for sustainable solid waste management, Engineering Applications of Artificial Intelligence, 82, 207-215.
  2. Asgharpour, M. J., 2017. Multi criteria decision making, Tehran university press, Tehran, Iran.
  3. Ayçin, E., Kaya, S. , 2021. Towards the circular economy: Analysis of barriers to implementation of Turkey’s zero waste management using the fuzzy DEMATEL method. Waste Management & Research, 39 (8), 1078-1089.
  4. Azar, A., Faraji, H., 2016. Science of fuzzy management, Mehraban press, Tehran, Iran.
  5. Azar, A., Rajabzadeh, A., 2018. Applied decision making with an approach of Multi-Attribute Decision Making (MADM), Negah Danesh, Tehran, Iran.
  6. Bakhshandehmehr, L., Soltani, S., Sepehr, A., 2013. Assessment of present status of desertification and modifying the MEDALUS model in Segzi plain of Isfahan. Journal of Range & Watershed Management, 66(1), 27-41.
  7. Barzani, M., Khairulmaini, O. S., 2013. Desertification risk mapping of the Zayandeh Rood basin in Iran. Journal of Earth System Science, 122(5), 1269–1282.
  8. Briassoulis, H., 2019. Combating land degradation and desertification: The Land-Use Planning Quandary. Land, 8(27), 1-26.
  9. Daneshi, A., Najafinejad, A., Panahi, M., Zarandian, A., 2020. Projecting land use change effects on habitat quality of Narmab dam basin in Golestan province. Degradation and Rehabilitation of Natural Land, 1(1), 120-130.
  10. Do, T. H. N., Shih, W., 2016. Destination decision-making process based on a hybrid MCDM model combining DEMATEL and ANP: The Case of Vietnam as a destination. Modern Economy, 7, 966-983. Available at: http://dx.doi.org/10.4236/me.2016.79099
  11. Dregne, H., 1999. Desertification assessment and control in: the United Nations University (Ed.). New Technologies to Combat Desertification. Proceedings of the International Symposium held in Tehran, Iran. Available at: https://archive.unu.edu/env/workshops/iran-1/index.htm
  12. Fontela, E., Gabus, A., 1976. The DEMATEL pilot survey. Futures, 8 (4), 379-389.
  13. Gabus, A., Fontela, E., 1972. World problems an invitation to further thought within the framework of DEMATEL. Battelle Geneva Research Centre, Geneva, Switzerland.
  14. Gabus, A., Fontela, E., 1973. Perceptions of the world problem Tique: Communication procedure, communicating with that bearing collective responsibility (DEMATEL Report No. 1). Battelle Geneva Research Centre, Geneva, Switzerland.
  15. Gabus, A., Fontela, E., 1974. Structural analysis of the perceptions of the world problematique (DEMATEL Report No. 2). Battelle Geneva Research Centre, Geneva, Switzerland.
  16. Gabus, A., Fontela, E., 1975. Perceptions of the word problem matique: results of a pilot survey (DEMATEL Report No. 3). Battelle Geneva Research Centre, Geneva, Switzerland.
  17. Gabus, A., Fontela, E., 1976. The DEMATEL observer, (DEMATEL Report No. 4). Battelle Geneva Research Centre, Geneva, Switzerland.
  18. Gharachelo, S., Ekhtesasi, M. R., Zareian Jahromi, M., Samadi, M. B., 2021. Evaluation of current condition of desertification using I.C.D Model, case study: Khezrabad, Yazd. Iranian Journal of Range and Desert Reseach, 17(3), 402-420.
  19. Ghodsipour, S. H., 2016. Analytical Hierarchical Process (AHP), Amir Kabir University press, Tehran, Iran.
  20. Grau, J. B., Anton, J. M., Tarquis, A. M., Colombo, F., Rios, L., Cisneros, J. M., 2010. Mathematical model to select the optimal alternative for an integral plan to desertification and erosion control for the Chaco Area in Salta Province (Argentine). Journal of Biogeosciences Discussions, 7, 2601–2630.
  21. Hasheminasab, S.,Jafari,, 2018. Evaluation of land use changes order to desertification monitoring using remote sensing techniques. Journal of Spatial Analysis Environmental Hazards, 5(3), 67-82.
  22. Jafary, M., Zehtabian, G., Ehsani, A. H., 2014. Investigation on the changes of desert lands using remote sensing data, Case study: Kashan. Iranian Journal of Range and Desert Research, 20(4), 644-652.
  23. Jiang, L., Jiapaer, G., Bao, A., Kurban, A., Guo, H., Zheng, G., De Maeyer, P., 2019. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia. Ecological Indicators, 104, 195-208.
  24. Kong, Z. H., Stringer, L. C., Paavola, J., Lu, Q., 2021. Situating China in the global effort to combat desertification. Land, 10(7),1-22. Available at: https://doi.org/10.3390/land10070702
  25. Lee, W. S., Huang, A. Y., Chang, Y. Y., Cheng, C. M., 2011. Analysis of decision-making factors for equity investment by DEMATEL and analytic network process. Expert Systems with Applications, 38 (7), 8375-8383.
  26. Li, J., Yang, X., Jin, Y., Yang, Z., Huang, W., Zhao, L., Gao, T., Yo, H., Ma, H., Qin, Z., Xu, B., 2013. Monitoring and analysis of grassland desertification dynamics using landsat images in Ningxia China. Remote Sensing of Environment, 138, 19-26.
  27. Lin, K., Lin, C., 2008. Cognition map of experiential marketing strategy for ho spring hotels in Taiwan using DEMATEL method. 4thInternational Conference on natural computation. Jinan, China.
  28. Moradi, A. R., Jafari, M., Arzani, H., Ebrahimi, M., 2016. Assessment of land use changes into dry land using satellite images and Geographical Information System (GIS). RS & GIS Techniques for Natural Resources, 7(1), 89-100.
  29. Najib, I., Ghani, A. T. A., Abdullah, L., Ahmad, M. F.,   An application of coastal erosion decision problem using interval type-2 FUZZY DEMATEL method. Journal of Sustainability Science and Management, 12(2), 204-217.
  30. Saaty, T. L. 1995. Decision making for leaders, RWS Publications, USA.
  31. Saaty, T. L., 2008. The analytical hierarchy and analytical network measurement processes: application to decisions under risk. European Journal of Pure and Applied Mathematics, 1(1), 122-196.
  32. Sadeghiravesh, M. H., 2016. Decision making process to natural resources. Islamic Azad University Publishing, Tehran, Iran.
  33. Sadeghiravesh, M. H., 2021- Analysis of the combating desertification alternatives derived from the decision-making models using the GRV function. Degradation and Rehabilitation of Natural Land, 1(2), 13-25.
  34. Sadeghiravesh, M. H., 2021-b. Application of Interpretive Structural Modelling (ISM) in analyzing obstacles to combat desertification with pathological approach in Yazd province. Journal of Watershed Management Research, in press.
  35. Sadeghiravesh , M. H., 2022. Prioritization of combating desertification strategies in Yazd- Khezr Abad plain by using Cook and Seiford method. Journal of Water and Soil Science (JWSS), in press
  36. Sadeghiravesh, M. , Khosravi, H., 2015. Application of Network Analysis Process (ANP) in assessment of combating desertification strategies. Desert Ecosystem Engineering Journal (DEEJ), 4(8): 11-24.
  37. Sadeghiravesh, M. H., Khosravi, H., Ghasemian, S., 2015. Application of Fuzzy Analytical Hierarchy Process (FAHP) for Assessment of combating-desertification alternatives in the central Iran. Journal of Natural Hazard, 75, 653-667.
  38. Sadeghiravesh, M. H., Khosravi, H., 2016. Evaluation of combat desertification strategies by using Individual Borda Ranking model. Desert Ecosystem Engineering Journal (DEEJ), 5(12), 109-121.
  39. Sadeghiravesh, M. H., Khosravi, H., 2021. Quantitative analysis of combating desertification alternatives using LINMAP model in Lingo software environment. Desert Management, 8(16), 57-76.
  40. Sadeghiravesh, M. H., Tahmores, M., 2014. Assessment of Combat Desertification Alternatives Using Fuzzy Topsis Model (FTOPSIS), Journal of Environmental Science and Engineering, 3, 79-94.
  41. Sepehr, A., Parvian, N., 2012. Desertification vulnerability mapping and developing combating strategies in the ecosystem of Khorasan Razavi Province using PROMETHEE Algorithm. Researches in Earth Sciences, 2(8), 71- 85.
  42. Sharifi, M., Farahbakhsh, Z., 2016. Investigation about temperature and humidity anomalies between pleistocene and present times؛ reconstruction of climate condition using geomorphic evidence (case study: Khezrabad-Yazd). Physical Geography Researches, 47(4), 583-605.
  43. Tong, S., Sun, Y., Ranatunga, T., He, J., Yang, Y., 2013. Predicting plausible impacts of sets of climate and land use change scenarios on water resource. Applied Geography, 32, 477-489.
  44. Tzeng, G., Huang, J., 2011. Multi attribute decision making: methods and applications. CRC Press, Boca Raton, Florida, USA.
  45. United Nations Convention to Combat Desertification (UNCCD). 2017. The global land outlook. UNCCD press, Bonn, Germany.
  46. Yang, C. K., Lee, B. J., Lei, T. C., 2014. Assessing the influential factors of fire rescue using DEMATEL method. International Journal on Innovation, Management and Technology, 5 (4), 239-243.
  47. Zare, A., Ahmadi Naseri, S. M. 2007. Presentation of stability index using fuzzy AHP sensitivity analysis. The first conference on fuzzy and intelligent systems, Ferdowsi University of Mashhad, Mashhad, Iran.
  48. Zehtabian, G. R., Ahmadi, H., Raesi, A., Rahdari, M. R., Khosravi, H., 2014. Quantitative assessment of desertification with emphasis on geo-climatology. Elixir International Journal, 68, 22474-22477.
  49. Zehtabian, G. R.,  Poorreza, , Khosravi, H.,Rahdari, M., 2015. The effects of land use change on land degradation and desertification in Ravansar watershed. Journal of Arid Regions Geographics Studies, 4(16), 73-85.