بررسی اثر تغییر اقلیم بر دما، بارش و خشکسالی‌های دورۀ آتی با استفاده از دو مدل گردش عمومی BNU-ESM و HadGEM2

نویسندگان

1 گروه جغرافیا، دانشکده علوم انسانی، دانشگاه جیرفت

2 گروه مهندسی طبیعت، دانشکده منابع طبیعی، دانشگاه جیرفت

3 دانشکده منابع طبیعی، دانشگاه تهران

10.22052/deej.2021.10.31.51

چکیده

در تحقیق حاضر با هدف ارزیابی اثر تغییر اقلیم بر دما، بارش و خشکسالی‌های آینده در شهرستان خاتم، از خروجی دو مدل گردش کلی HadGEM2 و BNU-ESM تحت سه سناریو RCP 2.6، RCP4.5 و RCP8.5 برای دو دورۀ آتی ۲۰۳۱ تا ۲۰۵۰ و ۲۰۵۱ تا ۲۰۷۰ استفاده شد. خروجی مدل HadGEM2 توسط مدل LARS-WG و خروجی مدل BNU-ESM توسط روش ریزمقیاس‌نمایی عامل تغییر ریزمقیاس گردید. همچنین به‌منظور ارزیابی کارایی روش عامل تغییر و مدل LARS-WG از شاخص‌های آماری R2، RMSE و NSE استفاده شد. بر طبق نتایج آماره‌های خطا، مدل LARS-WG برای هر دو پارامتر دما و بارش، دارای عملکرد بالاتری نسبت به روش عامل تغییر بود. برای ارزیابی خشکسالی، از شاخص بارش استاندارد (SPI) طی دورۀ گذشته (۱۹۹۶ تا ۲۰۱۷) و دو دورۀ آتی در مقیاس زمانی 24 ماهه استفاده شد. نتایج تغییرات دما و بارش در هر دو دورۀ آتی حاکی از آن بود که این شهرستان متأثر از گرمایش جهانی هست؛ به‌گونه‌ای ‌که در تمامی سناریوها در هر دو مدل، دمای متوسط سالانه افزایش و بارش متوسط سالانه کاهش می‌یابد. مقادیر SPI سالانه برای هر دو مدل HadGEM2 و BNU-ESM در هر دو دورۀ آتی تحت هر سه سناریو نسبت به دورۀ پایه کاهش ‌یافته و متعاقباً خشکسالی هواشناسی افزایش می‌یابد. بر طبق نتایج، در بین دو مدل GCM، مدل BNU-ESM کمترین مقدار بارش، بیشترین مقدار دما و بیشترین تعداد سال با خشکسالی شدید را در مقایسه با مدل HadGEM2 پیش‌بینی می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Climate Change on Future Temperature, Precipitation, and Droughts Using BNU-ESM and HadGEM2 Models

نویسندگان [English]

  • Ali Azareh 1
  • Elham Rafiei Sardooi 2
  • Meysam Jafari Gadaneh 3
1
2
3
چکیده [English]

Extended Abstract
Introduction: while global Climate Models (GCMs) are designed to assess climate change, they can only simulate large-scale atmospheric circulation model data. Therefore, these models' results need to be downscaled, for which there are different methods such as dynamical and statistical ones.
This study sought to investigate the effect of climate change on temperature, precipitation parameters, and drought in 2050-2031 and 2070-2051 periods in Khatam city using two general circulations models, namely BNU-ESM and HadGEM2. Moreover, as using only one downscaling model to achieve a perspective concerning the future climate of the study area with the slightest uncertainty does not seem logical, LARS-WG and Change Factor (Delta) were used as two downscaling models under RCP2.6, RCP4.5, and RCP8.5 scenarios.
 
Material and methods: The Khatam city is located south of the Yazd province, Iran. In this study, the data obtained from the synoptic station of Marvast were applied. The historical data from 1996 to 2017 comprised the daily temperature and precipitation. Moreover, the data collected from two large-scale models including HadGEM2-ES and BNU-ESM and two statistical downscaling methods, i.e., LARS-WG and Change Factor (CF), were applied to simulate precipitation, temperature, and drought in Khatam city under three scenarios including RCP2.6, RCP4.5, and RCP8.5 in 2031-2050 and 2051-2070 periods. Also, statistical indices such as R2, RMSE, and NSE were used to evaluate the accuracy of the CF method and the LARS-WG model. To assess the drought in the baseline period (1996-2017) and the two future periods, the standardized precipitation index (SPI) was used based on a 24-month scale.
 
Results: The results of temperature variations regarding 2031 to 2050 and 2051 to 2070 periods indicated that based on the LARS-WG model, the Khatam city would be affected by global warming, with temperature changes suggesting a 1.75, 1.94, and 2.12 °C increase from 2031 to 2050, and 2.07, 2.71, and 3.87 °C from 2051 to 2070 under the scenarios of RCP2.6, RCP4.5, and RCP8, respectively.
The results concerning annual precipitation variations based on the LARS-WG model showed that precipitation would be decreased by 6.1, 14.2, and 35.2% from 2030 to 2051, and by 26.8%, 35.5., and 51.5% from 2051 to 2070 under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, investigating annual temperature and precipitation changes based on the BNU-ESM model suggested an increase in temperature by 1.06, 1.83, and 2.13 °C from 2031 to 2050, and by 1.084, 1.94, and 2.82 °C from 2051 to 2070 under the RCP2.6, RCP4.5, and RCP8 scenarios, respectively.
The results of annual precipitation variations based on the BNU-ESM model showed that precipitation would decrease by 14, 22.1, and 32.9% from 2030 to 2051 and 24.2%, 33.9, and 48.1% during 2051 to 2070 under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. It should be noted that after determining the climatic parameters for future periods, the SPI values for future periods and three scenarios can be determined.
Moreover, the results indicated an increase in meteorological drought based on the HadGEM2 and BNU-ESM models for the two future periods under all scenarios compared to the baseline period. Also, the BNU-ESM showed higher drought compared to the HadGEM2 model.
 
Discussion and conclusion: as mentioned earlier, both downscaling models used in this study had a high accuracy in predicting future precipitation and temperature, which is consistent with the results found by Sadidi et al. (2020) in Kerman province, and the findings reported by Panahi and Khorramabadi (2020) in East Azerbaijan province. The study's findings concerning the two future periods' temperature changes in both models indicated that the Khatam city would be affected by global warming, indicating an increase in temperature from 2031 to 2050 and from 2051 to 2070 under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively.  Also, results regarding the precipitation changes in both models suggested a decrease in precipitation from 2031 to 2050 and from 2051 to 2070 under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, with the greatest decrease, occurred under the RCP 8.5 scenario, that is in accordance with the results found of Givati et al. (2019) in the upstream of the Jordan River. Moreover, the current study's results indicated the possibility of more severe droughts in future simulated periods by the LARS-WG downscaling model and CF method, which is compatible with the findings reported by Lucas and Et al. (2008), Lebedzki (2006), and Saleh Pourjam et al. (2014).  It could be argued that the increase in the severity of drought in future periods is due to the increase in temperature and decrease in precipitation, which is also confirmed by the results found by Node Farahani et al. (2015). According to this study's results concerning the comparison of the two GCM models, it could be said that the BNU-ESM model can predict the lowest precipitation, the highest temperature, and the highest number of years regarding the severe drought compared to the HadGEM2 model.

کلیدواژه‌ها [English]

  • RCP scenarios
  • Drought
  • Change Factor
  • LARS-WG
  • Khatam city
1. Abbasi, F., Malbousi, Sh., Babaeian, I., Asmry, M. and Borhani, R., 2010. Prediction of climate change in the period of 2039-2010 in South Khorasan, using statistical downscaling model output ECHO-G. Journal of Soil and Water (Agricultural Sciences and Technology), 24(2), 233-218 (in Farsi). 2. Angelidis, P., Maris, F., Kotsovinos, N. and Hrissanthou, V., 2012. Computation of drought index SPI with alternative distribution functions. Water resources management, 26(9), 2453-2473. 3. Babaian, I., 2005. Preliminary study and evaluation of Weather generator models Case study: Evaluation of LARS-WG model in selected stations in Khorasan province, Climatological Research Institute, Project Report. 4. Babaian, I. and Najafi Nik, Z., 2007. Introducing and evaluating the LARS-WG model for modeling the climatological parameters of Khorasan province in 1961-2003, Journal of Nivar, 63, 50-67. 5. Dash, S.S., Sahoo, B. and Raghuwanshi, N.S., 2019. A SWAT-Copula based approach for monitoring and assessment of drought propagation in an irrigation command. Ecological engineering, 127, 417-430. 6. Diaz-Nieto, J. and Wilby, R.L., 2005. A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom, Climatic Change, 69, 245–268. 7. Dubrovsky, M., Svoboda, M. D., Trnka, M., Hayes, M. J., Wilhite, D. A., Zalud, Z. and Hlavinka, P., 2009. Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology, 96(1), 155-171. 8. Givati, A., Thirel, G., Rosenfeld, D. and Paz, D., 2019. Climate change impacts on streamflow at the upper Jordan River based on an ensemble of regional climate models. Journal of Hydrology: Regional Studies, 21, 92-109. 9. IPCC., 2007. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1-18. 10. IPCC., 2013. Summary for policymakers. PP 3-29 In: T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley, (Eds.), Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. 11. Jahanbakhsh Asl, S., Khorshiddoust, A., Hossein Alinejad, M. and Pourasghr, F., 2016. Impact of Climate Change on Precipitation and Temperature by Taking the Uncertainty of Models and Climate Scenarios (Case Study: Shahrchay Basin in Urmia). Journal of Hydrogeomorphology. 3 (7), 107-122 (In Persian). 12. Kamal, A. R. and Massah Bavani, A. R., 2012. Comparison of future uncertainty of AOGCM-TAR and AOGCM-AR4 models in the projection of runoff basin. Journal of earth and space physics. 38(3): 175-188. 13. Karamouz, M., Fallahi, M., Nazif, S. and Rahimi Farahani, M., 2009, "Long Lead rainfall prediction using statistical downscaling and artificial neural network modeling", Journal of Sharif University of Technology, 16: 165-171. 14. Labedzki, L., 2006. Estimation of local drought frequency in central Poland using the standardized precipitation Index (SPI), Irrigation and Drainage, 56, 67-77. 15. Lee, S. H., Yoo, S. H., Choi, J. Y. and Bae, S., 2017. Assessment of the Impact of Climate Change on Drought Characteristics in the Hwanghae Plain, North Korea Using Time Series SPI and SPEI: 1981–2100. MDPI 9(579), 1-19. 16. Loukas, A., Vasiliades, L. and Tzabiras, J., 2008. Climate change effects on drought severity. Advances in Geosciences. 17, 23-29. 17. McKee, T.B., Doesken, N.J. and Kleist, J., 1995. Drought Monitoring with Multiple Time Scales, In Proc, 9th Conf. on Applied Climatology. January 15-20. American Meteorological Society. Massachusetts. pp 233-236. 18. Moafimadani, F., Mosavibaygani, M. and Ansari, H., 2015. Prediction of Khorasan Razavi Province drought condition at 2011-2030 with LARS-WG downscaling model. Geography and Environmental Hazard 7(2),157–171 (In Persian) 19. Node Farahani, M.A., Rasekhi, A., Parmas, B. and Keshvari, A., 2018. The Effects of Climate Change on Temperature, Precipitation and Drought in Upcoming Period in Shadegan Basin. Iran Water Resources Research.14(3), 160-173 (In Persian). 20. Pourkarimi, Z., Moghaddasi, M., Mohseni Movahed, A. and Delavar, M. A. J. I. D., 2018. The Effect of Climate Change on the Hydrological and Agricultural Drought Characteristics in Zarinehrud Basin Using SRI and SSWI Indices and SWAT Model. Iranian Journal of Soil and Water Research, 49(5), 1145-1157. (In Persian) 21. Quevauviller, P., 2011. Adapting to climate change: Reducing water-related risks in Europe-EU policy and research considerations. Environmental Science and Policy 14(7), 722–729. 22. Rasco, P., Szeidl, L. and Semenov, M. A., 1991. A serial approach to local stochastic models. J. Ecological Modeling, 57, 27-41. 23. Richardson, C.W., Wright, D.A., 1984. WGEN: A model for generating daily weather variables. US Department of Agriculture, Agricultural Research Service, ARS-8. USDA, Washington, DC. 24. Sadidi, J., Jafari Gadneh, M., Sajedi, H. and Hamzehzadeh, G., 2020. The Study of trend and prediction of temperature changes in arid and semi-arid regions (Case study: Kerman province), 14th Congress of the Geographical Association of Iran, Tehran. 25. Salajegheh, A., Rafiei Sardooi, E., Moghaddamnia, A.R., Malekian, A., Araghinejad, Sh., Khalighi Sigarodi and Saleh Pourjam, A., 2017. Performance assessment of LARS-WG and SDSM downscaling models in simulation of precipitation and temperature. Iranian journal of soil and water research. 48 (2): 253-262. 26. Salehpourjam, A., Mohseni Saravi, M. and Khalighi, Sh., 2015. Investigation of Climate Change Effect on Drought Characteristics in the Future Period using the HadCM3 model (Case Study: Northwest of Iran). Journal of Range and Watershed Management. 67 (4), 537-548 (in Persian). 27. Semenov, M. A. and Barrow, E. M., 2002. A Stochastic Weather Generator for Use in Climate Impact Studies: User Manual. Harpenden, Hertfordshire, UK. 28. Semenov, M. A., Brooks, R. J., Barrow, E. M. and Richardson, C. W., 1998. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate research, 10(2), 95-107. 29. Shaemi, A. and Habibinokhandan, M., 2009. Global warming and bio-ecological consequences. Ferdowsi University of Mashhad Press, 216 pp (in Persian). 30. Veijalainen, N., Ahopelto, L., Marttunen, M., Jääskeläinen, J., Britschgi, R., Orvomaa, M. and Keskinen, M., 2019. Severe drought in Finland: modeling effects on water resources and assessing climate change impacts. Sustainability, 11(8), 2450.