شبیه‌سازی تأثیر تغییرات کاربری اراضی بر فرسایش خاک با استفاده از مدل RUSLE در حوضۀ دویرج استان ایلام

نویسندگان

1 دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان

2 دانشکده علوم زمین، دانشگاه شهید چمران اهواز

10.22052/deej.2021.10.31.39

چکیده

تغییر پوشش و کاربری سطح زمین بر بسیاری از فرایندهای طبیعی نظیر فرسایش خاک و تولید رسوب، سیلاب و خصوصیات فیزیکی و شیمیایی خاک اثرگذار است. یکی از اثرات اساسی نوع پوشش زمین بر فرایندهای موجود در حوضه‌های آبخیز، نقش آن بر میزان فرسایش خاک است، بنابراین پژوهش حاضر با هدف شبیه‌سازی تأثیر تغییرات کاربری اراضی بر فرسایش خاک در حوضۀ دویرج استان ایلام در سه دورۀ 1995، 2006 و 2015 با استفاده از مدل RUSLE و تکنیک‌های سامانۀ اطلاعات جغرافیایی (GIS) و سنجش ‌از دور (RS) انجام شده است. نتایج این مطالعه نشان داد که تغییرات کاربری اراضی در این سه دوره موجب افزایش چشمگیر متوسط هدررفت خاک شده، به‌طوری که متوسط فرسایش خاک از 04/77 تن بر هکتار در سال 1995 به 51/108 تن بر هکتار در سال 2015 رسیده است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Vegetation and Conservation Factor On Soil Erosion Using RUSLE Model in Doiraj Basin of Ilam Province

نویسندگان [English]

  • Fateme Balouei 1
  • Shahin Mohammadi 2
  • Saeed Soltani kopaei 1
1
2
چکیده [English]

Changes in land cover and land use effect on natural processes such as soil erosion and sediment production, flooding and soil physical and chemical properties. One of the important impacts of land cover type on processes in watersheds is its role on soil erosion rate. The purpose of this study was to investigate the effect of vegetation changes and conservation factor on soil erosion in Doiraje watershed of Ilam province using GIS and RUSLE model . The results showed that the changes in Landuse/cover  increased the amount of soil loss. Soil conservation scenarios showed that with all factors constant, soil conservation with a correlation coefficient of 0.46% was secondarily important after topography with a correlation coefficient of 0.81% in determining soil erosion. The highest soil erosion under the soil conservation scenario was 2015, with an average of 48.91 ton / ha. Examination of land use / cover change scenarios showed that by keeping all factors constant, soil protection with a correlation coefficient of 0.46% in the second place after topography with a correlation coefficient of 0.81% and vegetation factor in the third degree played an important role in determining the amount of soil erosion. Is. The highest soil loss under the third scenario was in 2015 with an average of 108.94 tons per hectare per year.

کلیدواژه‌ها [English]

  • Land use change
  • Soil loss
  • Remote Sensing
1. Ahmadi, h., 2012. Water erosion. University of Tehran press. Applied Geomorphologe. Vol.1. 688p. 2. Aneseyee, A.B., Elias, E., Soromessa, T. and Feyisa, J.L., 2020. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia, Science of The Total EnvironmentVolume 728, 1 August 2020, 138776. 3. Arekhi, S. and Niazi, Y., 2010. Assessment of GIS and RS applications to estimate soil erosion and sediment loading by using RUSLE model (Case Study: upstream basin of Ilam dam). Journal of Soil and Water Conservation, 17 (2): 1-27. 4. Bafkar, AS. and Mojaradi, HR., 2009. Water and Soil Conservation. Razi University Press, Kermanshah, Iran. 200 p. (In Persian) 5. Balouei, F., 2018. Effect of land use change on surface runoff in Doiraj watershed of Ilam Province. The Thesis Submitted for the Degree of M.Sc (in the fieldof Watershed Management), Faculty of Natural Resources, Department of Range and Watershed Management, University of Isfahan University of Technology, Iran. 6. Basist, A., Bell, G.D. and Meentemery, V., 1994. Statistical relationship between topography and precipitation pattern j. of Climet. 7:1305-1315. 7. Biswas, S.S. and Pani, P., 2015. Estimation of soil erosion using RUSLE and GIS techniques: a case study of Barakar River basin, Jharkhand, India. Model. Earth Syst. Environ. (2015) 1:42 8. Bruce, R.R., Langdale, G.W., East, L.J. and Miller, W.P., 1995. Surface soil degradation and soil productivity restoration and maintanace. Soil Sci. Soc. Am. J. 59: 654-660. 9. Borrelli, P., Robinson, D.A., Fleischer, L.R., Lagota, E., Ballabio, C., Alewell, Ch., Meusburger, K., Modugno, S., Schutt, B., Ferro, V., Bagarello, V., Oost, K.V, Montanarella, L. and Panagos, P., 2013. An assessment of the global impact of 21st century land use change on soil erosion, Nature Commuication: 1-13. 10. Dabral, P.P., Baithuri, N. and Pandey, A., 2008. Soil erosion assesment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resources Management. 22: 1783-1798. 11. Ebrahimi, H., 2011. Performance Evaluation of SWATModel to Simulation of Runoff andSediment Yield in Doiraj River Basinin Ilam Province, The Thesis Submitted for the Degree of M.Sc (in the fieldof Watershed Management), Faculty of Natural Resources, Department of Range and Watershed Management, University of Zabol, Iran. 12. Entezari, M. and Gholam Heidari, H., 2014. Comparison of SLEMSA and CORINE Models in Soil Erosion Assessment (Case Study: tange Sorgh Shiraz Basin). Journal of Space Planning and Preparation. Eighth Volume 3: 1-28. (In Persian) 13. Ganasri, B. and Ramesh, H., 2015. Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin, Geoscience Frontiers. 14. Haan, C.T., Barfield, B.J. and Hayes, J.C., 1994. Design hydrology and sedimentology for small catchments. Academic Press, San Diego, 588p. 15. Huang, F., Chen, J., Yao, CH., Chang, Z., Jiang, Q., Li, SH. and Guo, Z., 2020. SUSLE: a slope and seasonal rainfall-based RUSLE model for regional quantitative prediction of soil erosion, Bulletin of Engineering Geology and the Environment, 3-16. 16. Hoyos, N., 2005. Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes, Catena, volume 63, number 1, pp.85-108. 17. Ibrahim, A. L., Yaakub, S.S., Mohammad Khan, N.L. and Huey. T.T., 2012. Application of geographic information system in soil erosion prediction. The 33RD Asian conference on remote sensing. 18. Jiu. J., Wu, H. and Li, S., 2019. The Implication of Land-Use/Land-Cover Change for the Declining Soil Erosion Risk in the Three Gorges Reservoir Region, China. International Journal of Environmental Research and Public Health. 1-16. 19. Kamangar, M., Farajzadeh, B., Manouchehr, M. and Karamim, P., 2014. Calibration of the Global Soil Erosion Equation (RUSEL) (Using Geographic Information and Remote Sensing System) Case Study of Sikhouran Hormozgan Watershed (Geospatial Science and Research Quarterly, 737-7, pp. 191-207). (In Persian) 20. Kinnell, P., 2000. AGNPS-UM: applying the USLE-M within the agricultural non-point source pollution model. Environmental Modelling & Software, Volume 15, number 3, pp. 331-341. 21. Kouli, M., Soupios, P. and Vallianatos, F., 2009. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chain, Northwestern Crete, Greece, Environment Geology, No. 57, PP. 483–492. 22. Lal, R., 1998. Soil erosion impact on agronomic productivity and environment quality. Critical Rev. Plant Sci. 17(4), 319– 464. 23. Lin, CY., Lin, WT. and Chou, WC., 2002. Soil erosion prediction and sediment yield estimation: the Taiwan experience. Soil and Tillage Research. 2002; 68(2):143-52. 24. Lu, D., Li, G., Valladares, G.S. and Batistella, M., 2004. Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land Degradation & Development. 2004; 15(5): 499-512. 25. Lufafa, A., Tenywa, M., Isabirye, M., Majaliwa, M. and Woomer, P., 2003. Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agricultural Systems, volume 76, number 3, pp. 883-894. 26. Mahdavi, M., 2011. Applied Hydrology, Volume I, Tehran, Tehran University Press, 330 p. 27. Mengesha, Z., Mohammed, S., Mohammedyasinb, Demeke, S., Anwar, A. and Ademc, M.L., 2018. Assessment of soil erosion using RUSLE, GIS and remote sensing in NW Ethiopia. GEODERMA REGIONAL. 1-32. 28. Mohammadi, Sh., Karimzadeh, H.R., Pourmanafi, S. and Soltani Kopai, S., 2018a. Spatial and Temporal Estimation of Soil Erosion Using RUSLE Model and Landsat Satellite Time Series) Case Study: Mandarjan, Isfahan, Journal of Rangeland and Watershed Management, Iranian Natural Resources, Volume 71, Issue 3:774-759. (In Persian) 29. Mohammadi, Sh., 2016. Estimating of erosion and sediment in the Menderjan watershed by RS and GIS,. M.Sc. thesis, isfahan university of technology.107 pp. (In Persian) 30. Mohammadi, Sh., Karimzadeh, h.R. and Alizadeh, M., 2018b. Spatial Estimation of Soil Erosion in Iran Using RUSLE Model. Journal of Ecohydrology. 551: 2-569. 31. Mojarad, F. and Moradifar, H.M., 2010. Modeling the relationship of rainfall with elevation in Zagros region. Tarbiat Modares University Publications Volume 7. No. 2: 1-20. 32. Neitsch, S. L., Arnold, J. G., Kiniry, J. R. and Willams, J.R., 2005. Soil and Water Assessment Tool theoretical documentation. Blackland Research Center. Texas Agricultural Experiment Statio. 494 p. 33. Nigel, R. and Rughooputh, S.D.D.V., 2010. Soil erosion risk mapping with new dataset: An improved prioritissation of high erosion risk area, Catena. 191-205. 34. NikKammi, D. and Mehdian, M.H., 2015. Rainfall erosivity mapping in Iran, Journal of Watershed Engineering and Management, 6(4): 364-376. . (In Persian) 35. Nwaogu, C., Okeke, O. J., Adu, S. A., Babine, E. and Pechanec, V., 2017. Land Use land cover change and soil-gully erosion relationships: a study of Nanka, south-eastern nigeria using geoinformatics. Dynamic in GIscience, 305-319. 36. Olorunfemi, IE., Komolafe, AA., Fasinmirin, JT., Olufayo, A. and Akande SO., 2020. A GIs-based assessment of the potential soil erosion and flood hazard zones in Ekiti State, Southwestern Nigeria using integratedRUSLE and HAND models. Catena. 194, 104725. 37. Ouyang, D. and Bartholic, J., 2001. Web-based GIS application for soil erosion prediction Soil Erosion. American Society of Agricultural and Biological Engineers, pp. 260. 38. Pacheco F.A.L., Varandas S.G.P., Fernandes L.S. and Junior R.V., 2014. Soil losses in rural watersheds with environmental land use conflicts. Sci. Total Environ. 485: 110 – 120. 39. Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., Tadić, M.P., Michaelides, S. Hrabalíková, M. Olsen, P. and Aalto, J., 2015. Rainfall erosivity in Europe. Science of the Total Environment. 2015; 511:801-14. 40. Pongsai, S., Schmidt, D.V., Rajendra, P., Shrestha, R., Clemente, S. and Eiumnoh, A., 2010. Calibration and validation of the Modified Universal Soil Loss Equation for estimating sediment yield on sloping plots: A case study in Khun Satan catchment of northern Thailand. J. Soil Sci. 90: 585-596. 41. Rahmati, S., JavadiTabalvandani, M., Rangavar, A. and FAramarz, M., 2014. Evaluating of efficiency and accuracy of USLE, AOF, MUSLE-S and MUSLE-E models on estimating of event-based erosion amount (Case study: Sanganeh soil conservation research Institute of Mashhad). J. Water Soil Conserv, 2014, 21(4), 215-229. 42. Renard, K. G. and Freimund, J. R., 1994. Using monthly precipitation data to estimate the R factor in the revised USLE. J. Hydrol. 157, 287-306. 43. Selby, M., 1993. Hillslope Material and Processes. Seconded. Oxford university pres. 44. Shicheng, L., Zhaofeng, W. and Yili. Z,. 2017. Crop cover reconstruction and its effects on sediment retention in the Tibetan Plateau for 1900–2000. J. Geogr. Sci. 2017, 27(7): 786-800. 45. Uddin, K., Abdul Matin, M. and Maharjan, S., 2018. Assessment of Land Cover Change and Its Impact on Changes in Soil Erosion Risk in Nepal. Journals Sustainability 1-20. 46. United States Department of Agriculture, USDA. 1981. Hndbook no. 282. 47. Wischmeier WH. and Smith, DD., 1978. Predicting rainfall erosion losses-a guide to conservation planning. Predicting rainfall erosion losses-a guide to conservation planning. Washington: US Department of Agriculture, 1978. 48. Zhang, H., Wei, J., Yang, Q., Baartman, J. E. M., Gai, L., Yang, X., Li, Sh., Yu, J., Ritsema, G.J. and Geissen, V., 2017. An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds. Geoderma 308 (2017) 36–45. 49. Zhang, H., Yang, Q., Li, R., Liu, Q., Moore, D., He, P., Ritsema, C.J. and Geissen, V., 2013. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Comput. Geosci. 52 (0), 177–188. 50. Zhang, Sh., Zhang, X., Huffman, T., Liu, X. and Yang, J., 2011. Influence of topography and land management on soilnutrients variability in Northeast China. Nutr Cycl Agroecosyst (2011) 89:427–438. 51. Zhang, Y., Yan, S. and Lu, Y., 2010. Snow Cover Monitoring Using MODIS Data in Liaoning Province, Northeastern China, Remote Sensing, 2, PP. 777-793.