ارزیابی شاخص‌های هواشناسی و روش‌های درون‌یابی به‌منظور پایش و پهنه‌بندی خشکسالی در مناطق خشک و نیمه‌خشک (مطالعۀ موردی: حوزۀ آبخیز قم-کهک)

نویسندگان

1 مرکز پژوهشی علوم جغرافیایی و مطالعات اجتماعی، دانشگاه حکیم سبزواری

2 دانشکده منابع طبیعی، دانشگاه جیرفت.

10.22052/deej.2018.7.21.45

چکیده

خشکسالی پدیده‌ای آرام و خزنده محسوب می‌شود که با تأثیر در بخش‌های کشاورزی، منابع آب و پوشش گیاهی در نواحی مختلف، به‌خصوص مناطق خشک و نیمه‌خشک، می‌تواند گسترش مناطق بیابانی را تسریع کند. یکی از روش‌های بررسی وضعیت خشکسالی در هر منطقه، پایش و پهنه‌بندی خشکسالی با استفاده از شاخص‌های هواشناسی و سیستم اطلاعات جغرافیایی (GIS) است. در تحقیق حاضر به‌منظور بررسی و پایش خشکسالی در منطقۀ مطالعاتی قم-کهک طی دورۀ آماری 29ساله (۱۳۶۷ـ136۸ تا ۱۳۹۵ـ139۶)، شاخص‌های خشکسالی مانند شاخص بارش استانداردشده (SPI) ، درصد نرمال (PNI)، شاخص دهک (DI)، شاخص Z چینی (CZI) و شاخص نمرۀ Z (ZSI) بررسی شدند. سپس با هدف پهنه‌بندی خشکسالی، روش‌های مختلف درون‌یابی در تمامی سال‌های دورۀ آماری مورد مطالعه در محیط نرم‌افزار ArcGIS ارزیابی گردیدند. نتایج شاخص‌های مختلف نشان داد که حالت نزدیک به نرمال در همۀ ایستگاه‌ها، طی دورۀ آماری مورد مطالعه، دارای بیشترین فراوانی است. بر اساس نتایج شاخص‌های SPI و CZI، بیشترین (7 سال) و کمترین (3 سال) تعداد خشکسالی به‌ترتیب در ایستگاه‌های کهک و جنت‌آباد اتفاق افتاده است؛ درحالی‌که بر اساس شاخص PN بیشترین و کمترین تعداد خشکسالی به‌ترتیب در ایستگاه‌های قم (9 سال) و جنت‌آباد (3 سال) مشاهده شد. همچنین نتایج شاخص PN حاکی از عدم وجود دورۀ ترسالی طی دورۀ آماری مورد مطالعه بوده است. بر اساس شاخص ZSI خشکسالی بسیار شدید در منطقه رخ نداده و نتایج ZSI در خصوص فراوانی طبقۀ ترسالی بسیار شدید، مشابه نتاج شاخص SPI است. در بین شاخص‌های مورد مطالعه، شاخص SPI مقارن با سال وقوع کمینۀ بارندگی در طول دورۀ آماری رخداد خشکسالی شدید و بسیار شدید را در تمام ایستگاه‌ها نشان داده، لذا به‌عنوان مناسب‌ترین شاخص برای پهنه‌بندی خشکسالی انتخاب شد. نتایج پهنه‌بندی نشان داد که در سال‌های آبی ۱۳۶۸ـ136۹، ۱۳۷۳ـ137۴ و ۱۳۷۵ـ137۶ بیشتر منطقه در وضعیت خشکسالی بسیار شدید تا خفیف قرار داشته است. در سال‌های آبی ۱۳۸۸ـ138۹ و ۱۳۹۵ـ139۶ نیز در بیشتر سطح منطقۀ مورد مطالعه، خشکسالی خفیف تا شدید رخ داده و تنها در قسمت شرقی منطقه، ترسالی خفیف مشاهده شد؛ درحالی‌که طی سال‌های آبی ۱۳۷۰ـ137۱، ۱۳۷۴ـ137۵ و ۱۳۸۷ـ138۸ منطقۀ مورد مطالعه، ترسالی متوسط تا شدید را تجربه کرده است. در سال آبی ۱۳۸۹ـ13۹۰ نیمۀ شرقی منطقه، ترسالی متوسط و نیمۀ غربی منطقه، ترسالی خفیف را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Meteorological Indices and Interpolation Methods to Drought Monitoring and Zoning in Arid and Semi-Arid Regions (A Case Study: Qoum-Kahak Basin)

نویسندگان [English]

  • Mahdi Zarei 1
  • Mojtaba Solaimani Sardo 2
1
2
چکیده [English]

Introduction: Drought is recognized as a slow, creeping phenomenon that can accelerates the expansion of desertification in different regions especially in arid and semi-arid area with its effect on the agricultural sectors, water resources and vegetation cover. Positioning of Iran in the world arid and semi-arid belt is exposed to drought and water crisis and desertification. Drought monitoring and zoning with the goal of planning and water resources management are very important in different area especially in arid and semi-arid regions. One of the methods for drought study is monitoring and mapping of drought using meteorological indices and Geographic Information System techniques.
 
Materials and Methods: In order to investigate and drought monitoring in present research during the period of 29 years (1989 to 2017) in Qoum-Kahak study region we used annual rainfall data from four stations (i.e. Qoume, Kahak, Koohsefid and Janatabad) which are located inside and around the Qoume-Kahak catchment. Then we applied meteorological indices such as Standard of Precipitation Index (SPI), Percent of Normal Index (PNi), Deciles Index (DI), Chinese Z Index (CZI) and Z-Score Index (ZSI) for drought monitoring during the study period. Afterward for drought mapping, four interpolation methods included Simple Kriging (SK), Ordinary Kriging (OK), Inverse Distance Weighting (IDW) and Radial Basis Functions (RBF) were used and compared. After determination of best method in each year, yearly drought map were produced based on the best interpolation methods in ArcGIS software environment.
Results: According to the result of meteorological indices the near-normal class occurred more than other classes in study stations. SPI results indicated that Jannatabad and Kahak stations have the highest and lowest frequency of extremely dry class during the study period, respectively. The most extremely dry class with the SPI of -2.35 was occurred in Janatabad station in the year of 1997-98. Based on the results of PNI and ZSI indexes there was no occurred extremely dry class in all stations. The result of PNI index indicated that Koohsefid station has the highest frequency of very dry class between all stations. According to the result of CZI index the extremely dry class was occurred only for Kahak and Janatabad stations in the water years of 2016-2017 and 1997-98 respectively. Extremely wet class was occurred also for Kahak and Janatabad stations during the water years of 2009-2010 and 1992-1993 respectively. The results of DI index illustrated that the class of very much below normal was occurred in Qoume and Koohsefid stations 4 times and in Kahak and Janatabad stations 3 times during the study period. We applied geostatistical analyst tools in ArcGIS software to produce zoning maps for rainfall and drought. Its result showed that ordinary kriging with RMSE of 28 mm is the best method to create rainfall map. Accordingly mean annual rainfall was 136 mm/year during the study period. We selected SPI index for drought monitoring and zoning because of according to the results of all meteorological indices,only for this index the extremely and severely drought classes for all stations have occurred Simultaneous with the minimal rainfall during the study period. Afterward we compared different interpolation methods to produce drought zoning maps for each year during the study period. Based on the results of RMSE ordinary kriging and simple kriging were the best methods for most years.    
 
Discussion and Conclusion: The results of all meteorological indices suggested that in all stations the near-normal class has the most frequency during the study period. According to the results of SPI and CZI indices, the highest (7 years) and lowest (3 years) number of drought were occurred in Kahak and Jannatabad stations, respectively. While according to PN index the highest (9 years) and lowest (3 years) number of drought were observed in Qoum and Jannatabad stations, respectively. Also the results of PN index illustrated that there was no wet period during the study period. According to the ZSI Index, the extremely dry class did not occurred in the region and the ZSI results about the frequency of extremely wet class was similar to the SPI results. The results of drought zoning indicated that in the years of 1990, 1995 and 1997, most of the region has been in a state of extremely to slightly drought. In the years 2010 and 2017, slight to sever drought classes were occurred in most parts of the study area and the slight wet class was observed in the eastern part of region. While during the years of 1992, 1996 and 2009 whole of the study area has experienced moderate and severe wet conditions. In the year of 2011, half of the study area which is located in the eastern part of the region has been in a state of moderate wet condition.

کلیدواژه‌ها [English]

  • Drought Monitoring
  • Interpolation Methods
  • Zoning
  • Meteorological Indices
  • Arid and Semi-Arid
  • Qoum-Kahak
1. Adib, A., Gorgizadeh, A., 2016. Evaluation and Monitoring of drought using of drought Indexes; Case study the Dez Watershed. Irrigation & Water 26, 173-185. 2. Bordi, I., Frigio, S., Parenti, P., Speranza, A., Sutera, A., 2001. The analysis of the standardized precipitation index in the Mediterranean area: regional patterns. Annali Di Geofisica, 44(5/6): 979-993. 3. Borna, R., F. Azimi, N. Saeedi Dahaki. 2010. Comparison of SLAP, PN and RAI index for surveying of droughts in Khuzestan province emphasizing the Abadan and Dezful stations. Quarterly Journal of Physical Geography. 3(9): 77-88. 4. Bryant, E.A., 1991. Natural Hazards. Cambridge: Cambridge University Press. 5. Chenari, M., 2005. Investigation on variation of some drought indices using markov chain in south alborz climate’s samples. Tehran University.M.Sc. Thesis, 159 p. 6. Gibbs, W.J., Maher, J.V., 1967. Rainfall Deciles as Drought Indicators, Bureau of Meteorology bulletin No. 48. Commonwealth of Australia: Melbourne; 29. 7. Hayes, M.J., Svoboda, M.D., Wihite, D.A., Vanyarkho, O.V., 1998. Monitoring the 1996 drought using the standardized precipitation index. Bulletin paper No 45. 8. Jahanbakhsh, S., Ghavidel Rahimi, Y., 2003. Analusis of Spatial distribution of wet and dry periods in the stations of Eastern Azerbaijan. Quarterly of Geography. 5, 4-39. 9. Kogan, F.N., 2000. Contribution of remote sensing to drought early warning, pp. 75-87. In D.A. Wilhite et.al. (eds.). Early Warning Systems for Drought Preparedness and Drought Management. WMO, Geneva, Switzerland. 10. Li, Y.J., Zheng, X.D., Lu, F., Ma, J., 2012. Analysis of Drought Evolvement Characteristics Based on Standardized Precipitation Index in the Huaihe River Basin. Procedia Engineering. 28: 434-437. 11. Loukas, A., Vasiliades, L., Tzabiras, J., 2008. Climate Change Effects on Drought Severity, Advances in Geosciences. 1: 23-29. 12. McKee, T.B., Doesken N.Y., Kleist J.Y., 1993. The relationship of drought frequency and duration to time scales. 8th Conference on Applied Climatology, 17-22 Janvier, Anaheim, 179-184. 13. Mirmousavi, S.H., Karimi, H., 2013. Effect of drought on vegetation cover using MODIS sensing images MODIS (Case Study: Kurdistan). Geography and Development, 11, 57-76. 14. Moazzenzadeh, R., Arshad, S., Ghahraman, B., Davari, K., 2012. Drought monitoring in unirrigated lands based on the remote sensing technique. Water and Irrigation Management, 2, 39-52. 15. Moghaddasi, M., Morid, S., Ghaemi, H., Samani, J. M.V., 2005. Daily drought monitoring, Tehran Province. Iranian Journal of Agricultural Science. 36, 51-62. 16. Morid, S., Smakhtin, V., Bagherzadeh, K., 2007. Drought forecastting using artificial neural networks and time series of drought indices, Inte. J Climat 27: 2103–2111. 17. Mosaedi, A., Marashi, M., Kavakebi, G.H., 2009. Comparison of Drought Frequency in arid and humid regions (Case study: Golestan Privince). J. Agric. Sci. Natur. Resour. 16, 277-291. 18. Nosrati, K., Azarnivand, H., 2002. Regional Analysis of the Drought Severity-Duration-Return Period Using Precipitation Data a Case study: Atrak Watershed. Biaban, 7, 49-61. 19. Potop, V., Mozny, M., Soukup, J., 2012. Drought evolution at various time scales in the lowland regions and their impact on vegetable crops in the Czech Republic. Agricultural and Forest Meteorology, 156, 121-133. 20. Raziei, T., Daneshkar Arasteh, P., Akhtari, R., Saghafian, B., 2007. Investigation of Meteorological Droughts in the Sistan and Balochestan Province, Using the Standardized Precipitation Index and Markow Chain Model. Iran-Water Resources Research, 3, 25-35. 21. Solgi, A., Radmanesh, F., Falamarzi, B., 2015. Drought Assessment and Monitoring of Nahavand City based on Drought Indices. Water Resources, 26, 35-50. 22. Sonmez, F.K., Komuscu, A.U., Erkan, A., Turgu, E., 2005. An Analysis of Spatial and 18- Temporal Dimension of Drought Vulnerability in Turkey Using the Standardize Precipitation Index .Natural Hazards 35: 243 – 264. 23. Tannehill, I. R., 1947. Drought, its Causes and Effects. Princeton, NJ: Princeton University Press. 24. Wang, Q., Adiku, S., Tenhunen, J., Granier, A., 2005. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment, 94, 244-255. 25. Wilhite, D.A., Pulwarty, R.S, 2017. Drought and Water Crises, Integration Science, Management, and Policy. Second Edition. 583 pp. 26. Zahiri, A.R., Sharifan, H., Abareshi, F., Rahimian, M., 2015. Assessment the Phenomena of Wet and Drought in Khorasan Province by using (PNPI, SPI, NITZCHE). Iranian Journal of Irrigation and Drainage 8, 845-856. 27. Zhu, Y., Wang, W., Singh, V.P., Liu, Y., 2016. Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection. Science of the Total Environment. 571: 1058-1068.