تعیین میزان اهمیت تأثیر پارامترهای متعدد هیدرواقلیمی بر خشکیدگی تالاب گاوخونی با به‌کارگیری شبکۀ عصبی مصنوعی و داده‌های سنجش از دور

نویسندگان

1 دانشگاه کاشان

2 سازمان جنگلها،مراتع وآبخیزداری

چکیده

تالاب‌ها ‌به‌عنوان یکی از مهم‌ترین و باارزش‌ترین اکوسیستم‌های طبیعی در جهان، نقش مهمی در پالایش آلاینده‌ها و کاهش ریزگردها، ایجاد میکروکلیمای مطلوب، حفظ تنوع زیستی و ژنتیکی و ذخیرۀ مواد آلی دارند. تالاب گاوخونی یکی از تالاب‌های مهم منطقۀ مرکزی ایران است که در دهه‌های اخیر، عوامل متعدد اقلیمی و انسانی تفاوت‌های قابل توجهی در سطوح خشک و مرطوب آن به‌وجود آورده و زمینه را برای تولید بیشتر ریزگردها در مناطق مرکزی ایران فراهم کرده است. در پژوهش حاضر نظر به نقش و اهمیت این تالاب بین‌المللی در توازن و تعادل بخشی زیست‌محیطی‌ـ اکولوژیکی مرکز کشور، تلاش شده است تا با بهره‌گیری از تکنیک‌های دورسنجی و شبکۀ عصبی عوامل مهم تأثیرگذار بر خشکیدگی تالاب و فرایند تغییرات به وقوع پیوسته در سطح تالاب در بازه زمانی 22 سال (71-1370 تا 92-1391) مورد بررسی و تجزیه و تحلیل قرار بگیرد. بدین منظور ابتدا 21 سری از تصاویر ماهوارۀ لندست محدودۀ مطالعاتی تهیه شد. پس از موزاییک کردن تصاویر ماهواره‌ای و اعمال تصحیح هندسی و رادیومتریک تصاویر، اقدام به تهیۀ شاخص آب اختلاف نرمال شده و تفکیک سطوح خشک و مرطوب گردید و پس از اعمال عملیات پساپردازش روی نقشه‌های تولیدشده، مساحت هر طبقه محاسبه شد. سپس متوسط پارامترهای بارندگی، دما، دبی، تبخیر و سطح ایستابی برای محدودۀ مطالعاتی با استفاده از روش تیسن برآورد گردید و روند تغییرات پارامترهای مذکور با استفاده از آزمون من‌ـ‌کندال مورد بررسی قرار گرفت. در نهایت برای تعیین میزان اهمیت هریک از عوامل تأثیرگذار بر خشکیدگی تالاب گاوخونی، توابع مختلف شبکۀ عصبی مصنوعی با یکدیگر مقایسه و از بهترین مدل برای مشخص کردن میزان اهمیت هر پارامتر استفاده شد. نتایج حاصل از روش من‌ـ‌کندال حاکی از کاهش معنی‌دار سطح ایستابی و دبی جریان‌های ورودی به تالاب در بازۀ زمانی مورد مطالعه است. همچنین نتایج این پژوهش براساس بهترین مدل برازش‌یافتۀ شبکۀ عصبی مصنوعی (MLP4) نشان داد که مهم‌ترین عوامل تأثیرگذار بر تغییرات سطح تالاب گاوخونی به‌ترتیب دبی جریان‌های ورودی به تالاب، تبخیر، افت سطح ایستابی، درجه‌حرارت و بارندگی است.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of The Importance of Hydro-climate Parameters on Drying in Gavkhooni Wetland Using Artificial Neural Network and Remote Sensing Data

نویسندگان [English]

  • Abbasali Vali 1
  • Zohreh Ebrahimi 1
  • Mohammad Khosroshahi 2
  • Reza Ghazavi 1
1
2
چکیده [English]

Wetlands as one of the most important and most valuable natural ecosystems in the world play an important role in filtering pollutants and reduce dust, creating a favorable microclimate, biodiversity and genetic and organic materials reservoirs. In central part of Iran, climatic and human factors have created significant differences between dry and wet surfaces of Gavkhooni wetland in recent decades and have provided a background to produce more dust in central part of Iran. This research aims to study and assess important factors that influence the process of changes occurring in wetlands and wetland drying up during the last 22 years by using remote sensing and artificial neural networks. To do so, 21 landsat imagery has been used. After that, Normalized Difference Water Index was calculated and the dry and wet surfaces has been separated. The average rainfall, temperature, flow, evaporation and water table depth for the study area was interpolated using Thiessen method and the trend of these parameters was examined using the Mann - Kendall. Finally, to determine the importance of each factor affecting wetlands drying up, various functions of artificial neural networks were compared and the best model was used to determine the importance of each parameter. The results of Mann - Kendall showed a significant decrease in ground water level and input flow to the wetlands in the period of the study. This study showed that the most important factors that influence the level of the Gavkhuni wetland are flow entering the lagoon, evaporation, drop in groundwater level, temperature and rainfall respectively.

کلیدواژه‌ها [English]

  • hydro-climate parameters
  • Gavkhooni wetland
  • Remote Sensing Technique
  • Dryied
  • Ground water Level
  • Artificial Neural Network
1. Abtahi, M., Seif, A., Khosroshahi, M., 2014. Assessment of temperature and precipitation trends in Kashan Namak lake basin during the last half-century. Iranian Journal of Range and Desert Reseach 21 (1), 1-12. 2. Baddock, M. C., Bullard, J. E., Bryant, R.G., 2009. Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre Basin Australia. Remote Sensing of Environment 113, 1511–1528. 3. Bayati, H., Najafi, A., 2011. Application of Artificial Neural Network for Assessing of the Stem Volume Trees. Journal of Renewable Natural Resources 2(2), 52-57. 4. Ceccato, P., Flasse, S., Tarantola, S., Jacquemond, S., Gregoire, J.M., 2001. Detecting vegetation water content using reflectance in the optical domain. Remote Sensing of Environment 77: 22–33. 5. Deyvis, J., 2001, the benefits of wetlands, Translator: Ayaft, A., Tehran Publications, First Edition, 108 p. 6. Du, Y., Teillet, P.M., Cihlar, J., 2002. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment 82, 123–134. 7. El-Asmar, H.M., Hereher, M.E., El Kafrawy, S.B., 2013. Surface area change detection of the Burullus Lagoon, North of the Nile delta, Egypt, using water indices: a remote sensing approach. 8. Gao, B. C., 1995. A normalized difference water index for remote sensing of vegetation liquid water from space, in SPIE's 1995 Symposium on OE / Aerospace Sensing and Dual Use Photonics, Vol. 2480, Orlando, FL. 9. Gautam, V., Gaurav, K., Murugan, P.K., Annadurai, P., 2015. Assessment of Surface Water Dynamicsin Bangalore using WRI, NDWI, MNDWI, Supervised Classification and K-T Transformation. International Conference on water Resources, Coastal and Ocean Engineering, 739-746. 10. Gu, Y., Brown, J.F., Verdin, J.P., Wardlow, B., 2007. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters 34. 11. Haibo, Y., Zongmin, W., Honglin, ZH., Yu, G., 2011. Water body Extraction Methods Study Based on RS and GIS. Procedia Environmental Sciences 10, 2619-2624. 12. Hobbins, M.T., Ramírez, J.A., Brown, T.C., 2004. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett., 31: L13503. doi: 10.1029/2004-GL019846. 13. Jawak, S.D., Luis, A.J., 2015. A Rapid Extraction of Water Body Features From Antarctic Coastal Oasis Using Very High-Resolution Satellite Remote Sensing Data. Aquatic Procedia 4, 125-132. 14. Kendall, M. G., 1975. Rank Correlation Methods, 4th ed., Charles Griffin: London. 15. Kousari, M.R., Ekhtesasi M.R., Tazeh, M., Saremi Naeini, M.A., Asadi Zarch, M.A., 2011. An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theoretical and Applied Climatology 103, 321-335. 16. Sharifikia M., 2010. Monitoring of the water level changes in the Hamoon lake, based on the tiome series analysis of remote sensing images. Spatial planning (Modares Human Sciences) 3, 155-175. 17. Lillesand, T.M., Kiefer R.W., 1994. Remote sensing and interpretation. Jhon Wiley and sons Inc., New York, 750 pp. 18. Liu, B., Xu, M., Henderson, M., Gong, W. A., 2004. spatial analysis of pan evaporation trends in China, 1955-2000. J. Geophys. Res. 109: D1516. doi: 10.1029/2004 JD004511. 19. Lu, D., Mausel, P., Brondı´zio, E., Moran, E., 2004. Change detection techniques. Int. J. Remote Sens. 25, 2365–2407. 20. Mahowald, N., Luo, CJ., Corral, D., Zende, C., 2003. Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data, J. Geophys. Res., 108(D12), doi:10.1029/2002JD002821 21. Mann, H. B., 1945. Non-parametric test against trend, Econometrica, 13, 245-259. 22. Mousavi, S.A, Shahriari A.R, Fakhire, A., Ranjbar, Rahdari, V., 2014. Assessment of changes trend of land cover with use of remote sensing data in Hamoon wetland. Journal of Biodiversity and Environmental Sciences (JBES) 4(5), 146-156. 23. Nafarzadegan A.R., Ahani, H., Singh, V., Kherad, M., 2013. Parametric and Non-Parametric Trend of Reference Evapotranspiration and its key influencing climatic variables (Case study: Southern Iran). Ecopersia 1(2), 123-144. 24. Peterson, T.C., Golubev, V.S., Groisman, P.Y., 1995. Evaporation losing its strength. Nature, 337, 687-688. 25. Rafiee, Y., Alavipanah, S.K., Malek Mohammadi, B., Ramezani, M., Nasiri, H., 2012. Land cover mapping using remote sensing and decision tree algorithm (Case Study: National parks and wildlife refuges Bakhtegan). Journal of Geography and Environmental Planning 23(3), 93-110. 26. Roderick, M.L., Farquhar, G.D., 2004. Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol 24(9), 1077-1090. 27. Roderick, M.L., Farquhar, G.D., 2005. Changes in New Zealand pan evaporation since the 1970s. Int. J. Climatol 25 (15), 2031-2039. 28. Rumelhart, D.E., Hinton G.E., Williams R.J., 1986. Learning internal representation by back-propagation errors. In: Rumelhart DE, McClelland JL, the PDP Research Group (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, MA 29. Sabziparvar, A.A., Shadmani, M., 2011. Trends Analysis of Reference Evapotranspiration Rates by Using the Mann-Kendall and Spearman Tests in Arid Regions of Iran. Journal of Water and Soil 25 (4), 823-834. 30. Sarkar, A., Kumar, R., 2012. Artificial Neural Networks for Event Based Rainfall-Runoff Modeling. Journal of Water Resource and Protection 4, 891-897. 31. Tabari, H., Marofi, S., 2010. Changes of Pan Evaporation in the West of Iran. Water Resource Management 25(1), 97-111. 32. Terz, O., Erol K., M., 2005. Modeling of Daily Pan Evaporation. Journal of Applied Sciences 5 (2), 368-372. 33. Teymoori, I., Habibi, L., Salarvandian, F., 2011. Determining environmental water rights Tashk lakes and Bakhtegan Using C- Classification Method. Physical Geography Research 77, 21-37. 34. Thomas, A., 2000. Spatial and temporal characteristics of potential evapotranspiration trends over China. Int. J. Climatol 20, 381-396. 35. Vali, A.A., Ramesht, M.H., Seyf, A., Ghazavi, R., 2011. Compare the performance of artificial neural networks and regression models to predict sediment flow case study: Samandegan Basin. Journal of Geography and Environmental Planning 22(4), 19-34. 36. Wang, Y., Jiang, T., Bothe, O., Fraedrich, K., 2007. Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theor. Appl. Climatol 90, 13-23. 37. Wang Q, Fan X, Qin Z, Wang M. 2012. Change trends of temperature and precipitation in the Loess Plateau Region of China, 1961–2010, Global and Planetary Change, 93,138-147.