بررسی ارتباط بین توزیع مکانی و زمانی شاخص‌های خشکسالی هواشناسی و هیدرولوژیک (مطالعۀ موردی: دشت جیرفت)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران

2 استادیار، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران

3 دانشیار، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران

‎10.22052/deej.2025.255412.1076

چکیده

برای مقابلۀ مؤثر با خشکسالی، شناسایی عوامل اقلیمی غالب که منجر به رویدادهای خشکسالی می‌شود، بسیار بااهمیت است. تحقیق حاضر با هدف بررسی توزیع مکانی و زمانی شاخص‌های خشکسالی هواشناسی (SPI) و هیدرولوژیک (SDI) انجام گرفت. بدین منظور از اطلاعات بارش 10 ایستگاه سینوپتیک و کلیماتولوژی در دورۀ آماری مشترک (1375-1399) و 7 ایستگاه هیدرومتری در دورۀ آماری (1372-1395) استفاده شد. برای بررسی توزیع مکانی شاخص‌های خشکسالی از روش‌های زمین‌آماری و برای بررسی توزیع زمانی و تعیین روند تغییرات از آزمون من-کندال استفاده شد. برای بررسی ارتباط بین شاخص‌های SPI و SDI از ضریب همبستگی پیرسون استفاده شد. نتایج حاصل از شاخص SPI نشان داد که در دورۀ کوتاه‌مدت و بلندمدت در برخی از سال‌ها (8 سال ناپیوسته) خشکسالی خیلی شدید اتفاق افتاده است که براساس طبقه‌بندی شاخص SPI مقدار بارش در این سال‌ها خیلی کمتر از نرمال بوده است. درمقابل، نتایج شاخص SDI برای ایستگاه‌های هیدرومتری نشان داد که در دهۀ 1380 و به‌ویژه ماه‌های مرداد، آذر و اسفند جریانی کمتر از نرمال داشته و شرایط خشکی حاکم بوده است. نتایج حاصل از ضریب همبستگی پیرسون نشان داد که بیشترین همبستگی بین شاخص‌های SPI و SDI در مقیاس‌های زمانی 12، 24 و 48 ماهه وجود دارد. در همۀ ایستگاه‌ها ارتباط معنی‌داری بین شاخص خشکسالی هواشناسی و هیدرولوژیکی وجود ندارد. یکی از دلایل این اختلاف می‌تواند حاصل منشأ گرفتن جریان زیرسطحی در بالادست ایستگاه‌های هیدرومتری که باعث ایجاد جریانی پایه شده است باشد. نتایج روند تغییرات شاخص‌های SPI و SDI نشان داد که ایستگاه‌های موجود در دو سطح اطمینان 95% و 99% دارای اختلاف معناداری با یکدیگرند. به‌طور کلی می‌توان نتیجه گرفت که تغییرات جریان رودخانه پس از یک تأخیر زمانی از شرایط بارش در منطقه تأثیر می‌پذیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the relationship between the spatial and temporal distribution of meteorological and hydrological drought indicators (Case study: Jiroft Plain)

نویسندگان [English]

  • Zahra Sanjari 1
  • Mehdi Hayatzadeh 2
  • Farzaneh Fotuhi Firoozabad 2
  • Ali Fathzadeh 3
  • Fatemeh Roustaei sadrabad 2
1 Faculty of Agriculture and Natural Resources, Ardakan University
2 Assistant Professor, Faculty of Agriculture and Natural Resources, Ardakan University
3 Associate Professor, Faculty of Agriculture and Natural Resources, Ardakan University
چکیده [English]

Introduction: Drought is an unavoidable natural disaster with far-reaching detrimental effects on various sectors, including water resources, agriculture, and the environment. Effective drought management necessitates identifying the dominant climatic factors that contribute to these events. Consequently, employing weather indicators and models, alongside analyzing the distribution of variables to accurately understand the underlying processes, is essential. Given that over two-thirds of Iran's regions are classified as arid and semi-arid – a condition partly attributed to the Alborz and Zagros mountain ranges hindering rain clouds from reaching the central and eastern parts – and experiencing greater precipitation variability, the central and southern regions of the country face more significant environmental damage. This research was conducted to investigate the spatial and temporal distribution of meteorological (SPI) and hydrological (SDI) drought indices.
Materials and Methods: In this research, precipitation data from 10 synoptic and climatology stations (covering the common statistical period of 1996-2020) and 7 hydrometric stations (covering the statistical period of 1993-2016) were utilized. Geostatistical methods were employed to analyze the spatial distribution of drought indicators, while the Mann-Kendall test was used to assess the temporal distribution and identify trends in changes. Pearson's correlation coefficient was calculated to examine the relationship between the SPI and SDI indices. The Mann-Kendall test, a non-parametric method, requires no specific distributional assumptions, making it suitable for time series that do not follow a particular distribution. The null hypothesis of this test posits randomness and the absence of a trend in the data series. Rejection of the null hypothesis indicates the presence of a statistically significant trend. Trend detection, as well as the identification of abrupt changes in the data, can be achieved through the Mann-Kendall test using both the test statistic (T) and the Mann-Kendall diagram. By inputting discharge and precipitation data into the software, the trend (or lack thereof) and any sudden shifts within the desired statistical period can be visualized using the corresponding graphs for each parameter.
Results: The results of the SPI index revealed that very severe droughts occurred in some years over both short-term and long-term periods (spanning 8 consecutive years). According to the SPI classification, precipitation amounts during these years were significantly below normal. Conversely, the SDI index results for the hydrometric stations indicated below-normal flow and prevalent dry conditions in the 2000s (specifically the Iranian calendar decade of the 1380s), particularly in August, December, and March. The Kahnag-Shibani, Kenaroieh, Zarin, Dehroud, and Qhala-Rigi stations showed consistency between the meteorological and hydrological indicators, suggesting that in most years with below-normal rainfall, river flow was negatively impacted, leading to reduced flow and a downward trend. Pearson's correlation coefficient results demonstrated the strongest correlation between the SPI and SDI indices at 12, 24, and 48-month time scales.
Discussion and Conclusion: Across all stations, no statistically significant relationship was found between the meteorological and hydrological drought indices. In other words, instances of hydrological drought did not consistently coincide with meteorological drought conditions. One potential reason for this discrepancy could be the influence of upstream flows contributing to baseflow at the hydrometric stations. Within the studied area, the most significant fluctuations in flow rate occurred during March, December, and August, while April, May, July, September, and November exhibited relatively stable and good flow conditions. A primary factor contributing to short-term flow variations is the utilization of moving averages and changes in precipitation across different months in the calculation of the SDI index. The analysis of SPI and SDI index variations revealed significant differences between the existing stations at the 95% and 99% confidence levels. Overall, it can be concluded that changes in river flow are influenced by the rainfall conditions in the region, albeit with a time lag.

کلیدواژه‌ها [English]

  • Zoning
  • IDW
  • drought
  • Maan-Kendall
  1.       Amiri, M., & Pourqasemi, H. R. (2019). Investigating the relationship between hydrological and meteorological droughts in Maharlu watershed, Fars province. Watershed engineering and management scientific-research journal, 11(3), 725-738. ]In Persian[.
  2.        Bevacqua‚ A. G., Chaffe‚ P. L., Chagas‚ V. B., & AghaKouchak‚ A. (2021). Spatial and temporal patterns of propagation from meteorological to hydrological droughts in Brazil. Journal of Hydrology‚ 603‚ 126902.

 

 3.       Fowler, H. J. & Ekstrom, M. (2009). Multi‐model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(3), 385-416. 

4.       Jehanzaib, M., Sattar, M. N., Lee, J. H., & Kim, T. W. (2020). Investigting effect of climate change on drought propagation from meteorological to hydrological drought using multi-model ensemble projections. Stochastic Environmental Research and Risk Assessment, 34, 7-21. 

5.       Jevan، kh. (2021). Meteorological drought in Urmia station using SPI index under climate change scenarios (RCP). Journal of Climate Change Research, 2(5), 94-81. ]In Persian[ 

6.       Kazemi, R., & Khazai, M. R. (2022). Prediction of Tehran and Yazd climate change in the future under RCP scenarios and by LARS-WG model. Environmental Science and Technology Quarterly, 24(6), 31-44. ]In Persian[. 

7.       Farmanara, S. M., Bakhtiari, B., & Sayari, N. (2020). Meteorological drought characteristics analysis under climate change effect using Copula in Fars Province. Water and spil. 34 (5), 1157-1173. 

8.       Kazemzadeh, M., & Malekian, A. (2016). Spatial characteristics and temporal trends of meteorological and hydrological droughts in northwestern Iran. Natural Hazards, 80, 191-210. 

9.       Khosravi, Y., & Mozaffari, G. H) .2016). Error analysis in SPI drought index assessment using geostatistics, case study: Bushehr province. The scientific-research and international quarterly of the Iranian Geographical Society, 14(48), 189-213 ]In Persian[. 

10.    Kushki, R., Rahimi, M., Amiri, M., Mohammadi, M. (2016). Investigating the relationship between meteorological and hydrological drought in Karkheh watershed. Master's thesis, Faculty of Desertology, Semnan University. ]In Persian[.

 11.    Kushki, R., Rahimi, M., Amiri, M., Mohammadi, M., & Dastorani, j. (2017). Investigating the temporal relationship of meteorological drought in Karkheh watershed. Journal of Ecohydrology, 4(3), 687-698 ]In Persian.[ 

12.    Malik‚ A., Tikhamarine‚ Y., Souag-Gamane‚ D., Rai‚ P., Sammen‚ S. S., & Kisi‚ O. (2021). Support vector regression integrated with novel meta-heuristic algorithms for meteorological drought prediction. Meteorology and Atmospheric Physics‚ 133‚ 891-909.

 13.    Myronidis‚ D., Ioannou‚ K., Fotakis‚ D., & Dorflinger‚ G. (2018). Streamflow and hydrological drought trend analysis and forecasting in Cyprus. Water resources management‚ 32‚ 1759-1776.

 14.    Nalbantis, I. (2008). Evaluation of a hydrological drought index. Journal of European Water, 23(24), 67-77. 

15.    Qaisori, M., Soltani Gardframarzi, S., & Ghasemi, M. (2018). Evaluation of meteorological and hydrological drought and its effect on water quality parameters (case study: Godar Khosh watershed). Irrigation Science and Engineering, 41(4), 91-105 ]In Persian[. 

16.    Roustaei sadr abadi, F., & Veli, A . (2016). Investigating the meteorological drought trend in central Iran and its effect on the wind erosion rate. Doctoral dissertation in the field of desertification, Faculty of Natural Resources and Earth Sciences, Kashan University. ]In Persian[.

 17.    Sabri, A., & Soltani Gardframarzi, S. (2017). Evaluation of geostatistical methods in the zoning of drought intensity in West Azarbaijan province. Scientific Research Journal of Irrigation and Water Engineering of Iran, 7(3), 151-165 ]In Persian[. 

18.    Safrad, T., Azizi, GH., Mohammadi, H., & Faraji Sabokbar, H. (2015). The variability of Siberian high pressure intensity during the period of global warming. Geography and natural hazards, 4(1), 77-94 ]In Persian[.

 19.    Sari-Saraf, B., Mahmoudi, S., Zangeh, S., & Pashaei, Z. (2015). Monitoring and forecasting drought and drought in Tabriz using CLIMGEN model and SPI index. Hydrogeomorphology, 2(2), 61-78 ]In Persian.( 

20.    Sarwar‚ A. N., Waseem‚ M., Azam‚ M., Abbas‚ A., Ahmad‚ I., Lee‚ J. E., & Haq‚ F. U. (2022). Shifting of Meteorological to Hydrological Drought Risk at Regional Scale. Applied Sciences‚ 12(11)‚ 5560. 

21.    Schwank, J., Escobar, R., Giron, G. H., & Moran-Tejeda, E. (2014). Modeling of the Mendoza river watershed as a tool to study climate change impacts on water availability. Environmental Science Policy, 43, 91-97.

 22.    Shahrukh Sardo, Z., Zarea, M., Mirmohammadi meybodi, S, A, M., Rahimian, M, H., & Arabi Ali Abad, F. (2019). The effect of drought on the quality of surface water in Halil Road basin, Kerman. Journal of water and soil sciences (sciences of agricultural techniques and natural resources), 23(3), PP 380-367. ]In Persian[. 

23.    Shakersureh, F., & Asadi, E. (2019). The relationship between meteorological and hydrological droughts in Selmas Plain. Scientific-Research Journal of Desert Ecosystem Engineering, 8(22), 89-100. ]In Persian[. 

24.    Theodossiou, N., & Latinopoulos, P. (2006). Evaluation and optimisation of groundwater observation networks using the Kriging methodology. Environmental Modelling and Software, 21(7), 991-1000. 

25.    Heidari motlagh, A., Nasrolahi, A., Sharifipour, M., & Veysi, S. (2021). Evaluation of Different Models for Estimating Reference Evapotranspiration (ETo) in Aleshtar Plain. Iranian Journal of Soil and Water Research, 52(5), 1409-1421. 

26.    Wu, J., Chen, X., Yao, H., & Zhang, D. (2021). Multi-timescale assessment of propagation thresholds from meteorological to hydrological drought. Science of the Total Environment, 765, PP144232.  

27.    Mondal, A., & Mujmard, P.P. (2015). Regional hydrological impacts of climate change: implications for water management in India. Proceeding of the intemational Association of Hydrological Sciences, 366, 34-43.