مدل‌سازی نسبت جذب سدیم با استفاده از برخی مدل‌های هوش مصنوعی (مطالعۀ موردی: برخی ایستگاه‌های هیدرومتری حوزۀ آبخیز کشکان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرم‌آباد، لرستان، ایران

2 دانشجوی دکتری، گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، لرستان، خرم‌آباد، ایران

3 دانشجوی دکتری، گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرم‌آباد، لرستان، ایران

‎10.22052/deej.2025.255227.1066

چکیده

با توجه به اهمیت جذب سدیم در مدیریت و پایداری خاک و همچنین کاربرد این نسبت در آب‌های سطحی، هدف این تحقیق، مقایسۀ عملکرد و کارایی مدل‌های ANN-MLP، LR و RF در تخمین و برآورد نسبت جذب سدیم در ایستگاه‌های هیدرومتری چم‌انجیر، دوآب ویسیان، چولهول افرینه، کشکان افرینه و کشکان پلدختر در استان لرستان است. پارامترهای ورودی و خروجی به‌منظور تخمین و مدل‌سازی نسبت جذب سدیم در این تحقیق، شامل TDS، EC، pH، HCO3، CL، SO4، Ca، Mg و Na بوده است که 70 درصد داده‌ها برای مرحلۀ آموزش و 30 درصد باقی‌مانده در مرحلۀ آزمایش مدل‌سازی استفاده شد. برای مقایسۀ کارایی مدل‌ها از معیارهای سنجش خطای ارزیابی ضریب همبستگی (CC)، میانگین خطای مطلق (MAE) و ریشۀ میانگین مربعات خطا (RMSE) استفاده شد. نتایج این تحقیق نشان داد که مدل MLP برای تخمین SAR در مقایسه با سایر مدل‌های به‌کار برده‌شده در این تحقیق، از کارایی بالاتری برای تخمین نسبت جذب سدیم برخوردار بوده است. نتایج معیارهای سنجش خطا برای مدل MLP به‌ترتیب گفته‌شده در ایستگاه چم‌انجیر برابر 99/0، 03/0 و 05/0، ایستگاه چولهول افرینه برابر 93/0، 09/0 و 18/0، ایستگاه دوآب ویسیان برابر 99/0، 01/0 و 02/0، ایستگاه کشکان افرینه برابر 87/0، 10/0 و 24/0 و ایستگاه کشکان پلدختر نیز به‌ همین ترتیب برابر 92/0، 05/0 و 19/0 و در مدل‌سازی داده‌های همۀ ایستگاه‌ها نتایج بخش آزمایش به‌ همین ترتیب برابر 96/0، 07/0 و 13/0 به‌ دست آمده است. همچنین نتایج تحلیل حساسیت مدل برتر در همۀ ایستگاه‌های مورد بررسی نشان داد که پارامتر Na بین پارامترهای ورودی این تحقیق حساس‌ترین پارامتر در مدل‌سازی نسبت جذب سدیم با استفاده از مدل MLP بوده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modelling of sodium absorption ratio (SAR) using some of the Artificial Intelligent Models (AIM) (Case study: Some of the hydrometric stations of Kashkan watershed)

نویسندگان [English]

  • Alireza Sepahvand 1
  • Nasrin Beiranvand 2
  • Reza Fathi Ganji 3
1 Associate Professor, Department of Range and Watershed Engineering, Faculty of Natural Resources, Lorestan University.
2 PhD student, Department of Range and Watershed Engineering, Faculty of Natural Resources, Lorestan University
3 PhD student, Department of Range and Watershed Engineering, Faculty of Natural Resources, Lorestan University.
چکیده [English]

Introduction: Water quality plays a crucial role in the optimal management of water resources, directly impacting both public health and the environment. Water finds its application across various sectors, including agriculture, drinking water supply, and industry. Among the diverse sources of water, rivers have been historically favored for the development of human societies due to their accessibility. Within river systems, the Sodium Adsorption Ratio (SAR) stands out as a key water quality parameter used to assess the suitability of water for both drinking and agricultural purposes. The ratio of sodium ions to calcium and magnesium ions serves as a predictor of the extent to which irrigation water tends to engage in cation-exchange reactions within the soil. This ratio, termed SAR (SAR=), is instrumental in determining the sodium hazard associated with irrigation waters. Given the significant role of the Sodium Adsorption Ratio (SAR) in soil management and stability, its accurate estimation holds particular importance. The purpose of this study was to model the Sodium Adsorption Ratio (SAR) using selected Artificial Intelligent Models (AIM).
Materials and methods: The study area encompasses a portion of the Karkheh watershed, situated in the central Zagros Mountains within Lorestan province, Iran. 1 This watershed was selected as an appropriate case study for evaluating Sodium Absorption Ratio Modeling (SARM). Geographically, the study area lies between 47°12′30″ to 48°59′20″ East longitudes and 33°05′45″ to 34°03′26″ North latitudes, covering an approximate area of 8844.6 km². The watershed's elevation ranges from 760 to 3646 meters above sea level. This region is classified as semi-arid, with mean annual rainfall varying according to topography and location, exhibiting a significant spatial variation from 401 mm in the lower valley to 473 mm in the upper watershed. Consequently, this study compared the performance of three soft computing techniques—Artificial Neural Network-Multi Layer Perceptron (ANN-MLP), Linear Regression (LR), and Random Forest (RF)—to estimate the Sodium Absorption Ratio (SAR) at the Chamanjir, Doab Visian, Cholhol Afrineh, Kashkan Afrineh, and Kashkan Poldokhtar hydrometry stations within the Karkheh watershed, Lorestan province, Iran. The dataset comprised observational water quality data (for training and testing) from the Kashkan watershed in Iran, spanning the period from 1968 to 2023. The complete dataset included measurements of Total Dissolved Solids (TDS), Electrical Conductivity (EC), pH, Bicarbonate (HCO-), Chloride (Cl), Sulfate (SO-), Calcium (Ca), Magnesium (Mg), Sodium (Na), and SAR from the five aforementioned hydrometric stations. Of this data, 70% was used to train the models, while the remaining 30% was used for model testing. Finally, the accuracy of the models was evaluated using three performance metrics: Correlation Coefficient (C.C.), Maximum Absolute Error (MAE), and Root Mean Square Error (RMSE).
Result: The findings of this study indicate that the Artificial Neural Network-Multi Layer Perceptron (ANN-MLP) model demonstrates superior accuracy in estimating the Sodium Absorption Ratio (SAR) compared to the Random Forest (RF) and Linear Regression (LR) models for the specified study area. Specifically, the test results for the MLP model revealed the following performance metrics: at the Chamanjir station, the Correlation Coefficient (C.C.) was 0.99, the Maximum Absolute Error (MAE) was 0.03, and the Root Mean Square Error (RMSE) was 0.05; at the Cholhol Afrineh station, these values were 0.93, 0.09, and 0.18, respectively; for the Doab Visian station, the results were 0.99, 0.01, and 0.02; at the Kashkan Afrineh station, they were 0.87, 0.10, and 0.24; and finally, at the Kashkan Poldokhtar station, the values were 0.92, 0.05, and 0.19. Furthermore, sensitivity analysis revealed that Sodium (Na) is the most influential parameter in the estimation/prediction of the Sodium Absorption Ratio (SAR) across all the examined hydrometry stations.
Discussion and Conclusion: The application of soft computing techniques in predicting Water Quality Indices (WQI) can streamline the process and reduce the time involved. In this study, three such techniques—Random Forest (RF), Artificial Neural Network-Multi Layer Perceptron (ANN-MLP), and Linear Regression (LR)—were employed for the prediction of the Sodium Absorption Ratio (SAR) within the Kashkan watershed in Lorestan province, Iran. The results demonstrated that by sampling and measuring various hydro-chemical parameters and subsequently applying soft computing techniques, SAR can be predicted with a high degree of accuracy. Based on the findings of this research, these optimized models offer a viable alternative to the often costly and time-consuming traditional methods of estimating the Sodium Absorption Ratio (SAR) in rivers. Furthermore, these models hold potential for estimating the Sodium Absorption Ratio (SAR) in nearby rivers, even in the absence of hydrometry stations, thereby providing valuable tools for the effective management of surface water quality.

کلیدواژه‌ها [English]

  • Lorestan Province
  • Kashkan Watershed
  • Sodium Absorption Ratio (SAR)
  • Modelling
  • Artificial Intelligent Models (AIM)
  1. Asadi, M., Fathzadeh, A., & Taghizadeh, R. (2016). Optimization of suspended load estimation models with the help of geomorphological parameters and feature reduction technique. Iran water and soil research, 48(3), 669-678.
  2. Azin Mehr, M., Behermand, A., & Kabir, A. (2016). Analysis of the sensitivity and uncertainty of the WetSpa model in simulating the flow hydrograph using PEST, Watershed Management Research Journal, 7(13), 82-72.
  3. Babiker, I.S., Mohamed, A.A., & Hiyama, T. (2007). Assessing groundwater quality using GIS. Journal of Water Resources Management. 21(4), 699– 715.
  4. Bahremand, A., De Smedt, F., Corluy J., Liu Y.B., Poorova, J., Velcicka, L., & Kunikova, E. (2007). WetSpa Model Application for Assessing Reforestation Impacts on Floods in Margecany-Hornad Watershed, Slovakia. Journal of Water Resources Management, 21(8), 1373-1391.
  5. Biranvand, N., Sepehvand, A., & Haqizadeh, A. (2023). Suspended sediment load modeling by machine learning algorithms in low and high discharge periods. Water and Soil Modeling and Management, 3(2), 50-65.
  6. Eswaran, H.E., Berg, V.D., & Almaraz, A. (2001). Global distribution of Aridisols and their characteristics. In: Proc. Of the international workshop in classification and management of arid desert Urmqi, china. 53: 1312-1320.
  7. Gan, Y., Duan, Q., Gong, W., Tong, Ch., Sun, Y., Chu, W., Ye, A., Miao, C., & Di, Zh. (2014). A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model. Environmental Modelling & Software, 51: 269-285.
  8. Gholami, V., Derakhshan, S., & Darwari, Z. (2012). Multivariate Regression Method and Artificial Neural Network (ANN) in Modeling Ground Water Salinity in the Coastal Areas of Mazandaran Province, Iran. Journal of Water Research in Agriculture26(3), 355-365. doi: 10.22092/jwra.2012.118987. (InPersian).
  9. Giudice, G.D., & Padulano, R. (2016). Sensitivity analysis and calibration of a rainfall-runoff model with the combined use of EPA-SWMM and genetic algorithm. Acta Geophysica, 64(5): 1755-1778.
  10. Jafar Zadeh, N., Kabi, H. & Sepehr Far, K. (2006). Application Feasibility and Selection of the Most Appropriate Water River Water Quality Index Case Study: Zohreh River, 7th conference on river engineering, Ahvaz, Iran p. 211. (In Persian).
  11. Jamei, M., Mumtaz, A., Masoud K., Karimi, B., Jahannemaei, N., Farooque, A.A., & Mundher Yaseen, Z. (2024). Monthly sodium adsorption ratio forecasting in rivers using a dual interpretable glass-box complementary intelligent system: Hybridization of ensemble TVF-EMD-VMD, Boruta-SHAP, and eXplainable GPR. Expert Systems with Applications, 237(B).
  12. https://doi.org/10.1016/j.eswa.2023.121512.
  13. Karami, M., KashefiPour, M., Mazad, H., & Foroughi, H. (2006). Forecasting of Karoon river quality using ANN. 7th conference on river engineering, Ahvaz, Iran. p. 321. (In Persian).
  14. Karbasi, M., & Dindar, S. (2017). Comparison of Wavelet-MLP and Wavelet-GMDH models in predicting electrical conductivity (EC) and sodium absorption ratio (SAR) in Zayandeh River. Environmental Science Quarterly, 16(4:)135-1. (InPersian).
  15. Michael, A.M. (2008). Water wells & pumps, Tata McGraw-Hill Education.
  16. Mostafazadeh, R., Mirzaei, Sh., Asmali, A., & Zabihi, M. (2017). Analysis of the sensitivity of flow hydrograph components to changes in the parameters of Clark's time-space method.Water and Soil Research, 49 (1): 91-99.
  17. Najah, A., El-Shafie, A., & Karim, O. (2009). Prediction of Water Quality Parameters Using Artificial Intelligence, LAP LAMBERT Academic Publishing, 56 pp.
  18. Piri, H., & Bamri, A. (2013). Estimation of sodium absorption ratio (SAR) in groundwater using multivariate linear regression of artificial neural network (case study of Bejestan Plain). Water Resources Engineering, 7(21), 67-79.. (InPersian).
  19. Rahli Namin, B., Salman Mahini, A., & Moradi, H. (2011). Quantification of the relationship between quality parameters of underground water and surface phenomena (Qarasu watershed, Golestan province). Natural Environment (Natural Resources of Iran), 65(1),67-82. (InPersian).
  20. Rodriguez, V., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sánchez, J.P. (2012). An assessment of the effectiveness of a Random Forest classifier for land-cover classification. ISPRS Journal of Photogram Remote Sensing, 67, 9 -104.
  21. Sahoo, G.B., Ray, C., & Wade, H.F. (2004). Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks. Ecological Modelelling. 183(1), 29– 46.
  22. Schiedek, T., Beier, M., & Ebhardt, G. (2008). Monitoring urban impact on groundwater quality statisticalanalyses in Darmstadt. Geophysical Research Abstracts. Germany.10. DOI:13140/2.1.1169.3449.
  23. Sepahvand, A., Singh, B., Ghobadi, M., & Sihag, P. (2020). Estimation of infiltration rate using data-driven models. Arabian Journal of Geosciences, 14(42): 1-11.
  24. Sepahvand, A., Singh, B., Sihag, P., Nazari Samani, A., Ahmadi, H., & Fiz Nia, S. (2021). Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR), ISH Journal of Hydraulic Engineering, 27(sup1),124-135.DOI: 10.1080/09715010.2019.1595185.
  25. Sepaskhah, A.R., & Tafteh, A. (2012). Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agricultural Water Management.112: 55-62.
  26. Sharif Zak, M., & Barani, A.G. (2018). Forecasting the flow rate in mixed channels using neural network algorithms, the first national conference on civil engineering and development, Zibakanar, Rasht, Gilan, 1-6.
  27. Shaygan, M., & Baumgart, T. (2022). Reclamation of salt-affected land: A review. Soil Systems, 6(3), 61 pp.
  28. Sihag, P., Singh, B., Sepahvand, A., & Mehdipour, V. (2020). Modeling the infiltration process with soft computing techniques, ISH Journal of Hydraulic Engineering, 26(2): 138-152,
  29. Sposito, G., & Mattigod, S.V. (1977). On the chemical foundation of the sodium adsorption ratio . Soil Science Society America Journal, 41(2), 323–329. doi:10.2136/sssaj1977.0361599500410002 030x.
  30. Wu, Z., Moayedi, H., Salari, M., Le, B.N., & Dehrashid, A.A. (2024). Assessment of sodium adsorption ratio (SAR) in groundwater: Integrating experimental data with cutting-edge swarm intelligence approaches, Stoch Environ Res Risk Assess. doi.org/10.1007/s00477-024-02727-x
  31. Zoppou, Ch. (1999). Review of storm water models. CSIRO Land and Water Canberra Technical report, 52-99.