Functional Traits of Plant Communities and Their Effect on Land Surface Temperature (LST) in Arid Ecosystems of Kerman Province

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه منابع طبیعی، واحد بافت، دانشگاه آزاد اسلامی، بافت، ایران.

2 دانشیار، گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان. ایران.

‎10.22052/deej.2025.255910.1086

چکیده

The ability of plant communities in natural ecosystems to modify temperature has become increasingly important due to the profound impacts of global climate change, particularly in arid regions. However, previous studies have provided limited information on the long-term temperature feedback of these plant communities and the biotic drivers behind these changes. This study aimed to determine the functional traits and types of plant communities as biotic drivers of land surface temperature (LST) at the plant community scale, with a focus on identifying co-functioning communities in the Sirjan region of Kerman Province. To achieve this, we utilized the MODIS-LST 8-day composite product at the plant community scale and measured functional traits of dominant species through field operations. The results revealed that leaf dry matter content (LDMC), maximum height (MH), and leaf width (LW) traits significantly reduce LST. Additionally, cluster analysis indicated that the plant communities in the study area can be classified into five functional groups, which fall into two co-function categories. The S-strategized co-function (e.g., 26 communities), characterized by high LDMC values and a combination of abrupt and trend feedback in LST, was found to be more effective than the R-strategized co-function (e.g., 13 communities), which exhibited only trend feedback. Therefore, it can be argued that extreme temperatures, as a global concern, can be mitigated through careful selection of vegetation based on functional traits and strategies. This approach, particularly through rangeland improvement practices using species such as Astragalus spachianusCornulaca monacantha, and Launaea acanthodes, could play a significant role in addressing this challenge.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Functional Traits of Plant Communities and Their Effect on Land Surface Temperature (LST) in Arid Ecosystems of Kerman Province

نویسندگان [English]

  • Reza Bagheri 1
  • Sedigheh Mohamadi 2
1 Associate Professor, Department of Natural Resources, Baft Branch, Islamic Azad University, Baft, Iran
2 Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
چکیده [English]

The ability of plant communities in natural ecosystems to modify temperature has become increasingly important due to the profound impacts of global climate change, particularly in arid regions. However, previous studies have provided limited information on the long-term temperature feedback of these plant communities and the biotic drivers behind these changes. This study aimed to determine the functional traits and types of plant communities as biotic drivers of land surface temperature (LST) at the plant community scale, with a focus on identifying co-functioning communities in the Sirjan region of Kerman Province. To achieve this, we utilized the MODIS-LST 8-day composite product at the plant community scale and measured functional traits of dominant species through field operations. The results revealed that leaf dry matter content (LDMC), maximum height (MH), and leaf width (LW) traits significantly reduce LST. Additionally, cluster analysis indicated that the plant communities in the study area can be classified into five functional groups, which fall into two co-function categories. The S-strategized co-function (e.g., 26 communities), characterized by high LDMC values and a combination of abrupt and trend feedback in LST, was found to be more effective than the R-strategized co-function (e.g., 13 communities), which exhibited only trend feedback. Therefore, it can be argued that extreme temperatures, as a global concern, can be mitigated through careful selection of vegetation based on functional traits and strategies. This approach, particularly through rangeland improvement practices using species such as Astragalus spachianusCornulaca monacantha, and Launaea acanthodes, could play a significant role in addressing this challenge.

کلیدواژه‌ها [English]

  • Co-function
  • Drylands
  • Desert rangelands
  1. Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar energy, 70(3), 295–310. https://doi.org/10.1016/S0038-092X(00)00089-X
  2. Arjmand, M. J., Bagheri, R., & Beheshti Rad, M. (2014). The allelopathic effect of Artemisia aucheri On germination and primary development of Amygdalus scoparia. Eco-phytochemical Journal of Medical Plants. 1, 4 (4), 68-78.
  3. Asner, G. P., & Heidebrecht, K. B. (2005). Desertification alters regional ecosystem–climate interactions. Global Change Biology. 11(1),182-94. https://doi.org/10.1111/j.1529-8817.2003.00880.x
  4. Azizi, M., Chenchouni, H., Belarouci, M.E.H., Bradai, L., & Bouallala, M.H. (2021). Diversity of psammophyte communities on sand dunes and sandy soils of the northern Sahara desert. Journal of King Saud University-Science. 33(8), p.101656.
  5. Barbeta, A., Miralles, D.G., Mendiola, L., Gimeno, T.E., Sabaté, S., & Carnicer, J. (2023). Disentangling the role of Forest structure and functional traits in the thermal balance of the Mediterranean–temperate ecotone. Journal of Geophysical Research: Biogeosciences. 128(6), p.e2022JG007264.
  6. Beltran-Przekurat, A. R., Pielke, D. P. C., Peters, A. S., & Rango, A. (2008). Modeling the effects of historical vegetation change on near-surface atmosphere in the northern chihuahuan Desert. Journal of Arid Environments. 72, 1897–1910. https://doi.org/10.1016/j.jaridenv.2008.05.012
  7. Bernhardt‐Römermann, M., Römermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W., & Stadler, J. (2008). On the identification of the most suitable traits for plant functional trait analyses. Oikos. 117(10), 1533-1541.
  8. Bricca, A., Tardella, F.M., Ferrara, A., Panichella, T., & Catorci, A. (2021). Exploring assembly trajectories of abandoned grasslands in response to 10 years of mowing in sub-mediterranean context. Land. 10, 1158. https://doi.org/10.3390/land10111158.
  9. Brown, L. R., Bezuidenhout, H., Du Preez, P. J., Bredenkamp, G. J., & Mostert, T. H. (2013). Guidelines for phytosociological classifications and descriptions of vegetation in southern Africa: checklist. Koedoe: African Protected Area Conservation and Science. 1, 55(1), 1-0. https://hdl.handle.net/10520/EJC139556
  10. Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. Appl. Ecol. 48, 1079–1087.
  11. Chang, Y., Ding, Y., Zhao., & Zhang, S. (2017). Remote Estimation of Terrestrial Evapotranspiration by Landsat 5 TM and the SEBAL Model in Cold and High-Altitude Regions: A Case Study of the Upper Reach of the Shule River Basin, China. Processe. 31 (3), 514– 524
  12. Chen, Y., Wang, J., Jiang, L., Li, H., Wang, H., Lv, G., & Li, X. (2023). Prediction of spatial distribution characteristics of ecosystem functions based on a minimum data set of functional traits of desert plants. Frontiers in Plant Science. 14, p.1131778.
  13. Cho, JH., & Lee, JH. (2018). Multiple linear regression models for predicting nonpoint-source pollutant discharge from a highland agricultural region. Water. 10(9), 1156. https://doi.org/10.3390/w10091156
  14. Dendoncker, M., Taugourdeau, S., Messier, C., & Vincke, C. (2023). A functional trait-based approach to evaluate the resilience of key ecosystem functions of tropical savannas. Forests. 2, 14(2), 291.
  15. Denelle, P., Violle, C., & Munoz, F. (2019). Distinguishing the signatures of local environmental filtering and regional trait range limits in the study of trait–environment relationships. Oikos. 128, 960–971.
  16. Deng, C., & Wu, C. (2013). Examining the impacts of urban biophysical compositions on surface urban heatisland: A spectral unmixing and thermal mixing approach. Remote Sensing of Environment. 131, 262–274. https://doi.org/10.1016/j.rse.2012.12.020
  17. Díaz, S., & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655
  18. D'Odorico, P., Fuentes, J. D., Pockman, W. T., Collins, S. L., He, Y., Medeiros, J. S., DeWekker, S., & Litvak, M. E. (2010). Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere. 1(6), 1-1. https://doi.org/10.1890/ES10-00073.1
  19. Dugas, W. A., Hicks, R. A., & Gibbens, R. P. (1995). Structure and function of C-3 and C-4 Chihuahuan Desert plant communities. Energy balance components. Journal of Arid Environments. 34, 63–79.
  20. El-Keblawy, A., Abdelfattah, M.A., & Khedr, A.H.A. (2015). Relationships between landforms, soil characteristics and dominant xerophytes in the hyper-arid northern United Arab Emirates. Journal of Arid Environments. 117, 28-36.
  21. Friedl, M., (2002). Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sensing of Environment. 79, 344–354. https://doi.org/10.1016/S0034-4257(01)00284-X
  22. Garnier, E., Cortez, J., Bille` s, G., Navas, M.-L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C., & Toussaint, J.-P. (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630–2637.
  23. Gaüzère, P., Blonder, B., Denelle, P., Fournier, B., Grenié, M., Delalandre, L., Münkemüller, T., Munoz, F., Violle, C., & Thuiller, W. (2023). The functional trait distinctiveness of plant species is scale dependent. Ecography. (1), p.e06504.
  24. Gholami, P., Amozgar, L., Habibi, M., & Shirmardi, H. A. (2015). Allelopathic effect of Artemisia aucheri on seed germination of Agropyron elongatum and Agropyron repens. Journal of Plant Ecosystem Conservation. 10, 3(6), 69-80.
  25. Goncharenko, I., & Yatsenko, H. (2020). Phytosociological study of the forest vegetation of Kyiv urban area (Ukraine). Hacquetia. 27, 19(1), 99-126. DOI: 10.2478/hacq-2019-0012
  26. Gonzalez, RA., & Noble, R. T. (2014). Comparisons of statistical models to predict fecal indicator bacteria concentrations enumerated by qPCR- and culture-based methods. Water Res. 48: 296–305. https://doi.org/10.1016/j.watres.2013.09.038
  27. Goud, E.M., Agrawal, A.A., & Sparks, J.P. (2023). A direct comparison of ecological theories for predicting the relationship between plant traits and growth. Ecology. 104(4), p.e3986.
  28. Grime, J. P., & Society, B. E. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder ffects. Ecol. 86, 902–910.
  29. Gerken, T., Ruddell, B. L., Yu, R., Stoy, P. C., & Drewry, D. T. (2019). Robust observations of land-to-atmosphere feedbacks using the information flows of FLUXNET. Npj Climate and Atmospheric Science. 2(1), 37. https://doi.org/10.1038/s41612-019-0094-4
  30. Guerra, J.G., Cabello, F., Fernandez-Quintanilla, ´ C., & Dorado, J. (2021). A trait-based approach in a Mediterranean vineyard: effects of agricultural management on the functional structure of plant communities. Agric. Environ. 316, 107465 https://doi.org/10.1016/j.agee.2021.107465.
  31. Guo, G., Wu, Z., Xiao, R., Chen, Y., Liu, X., & Zhang, X. (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning. 1, 135, 1-0. https://doi.org/10.1016/j.landurbplan.2014.11.007
  32. Hanisch, M., Schweiger, O., Cord, A.F., Volk, M., & Knapp, S. (2020). Plant functional traits shape multiple ecosystem services, their trade‐offs and synergies in grasslands. Journal of Applied Ecology. 57(8), pp.1535-1550.
  33. Heim, A., & Lundholm, J. (2022). Changes in plant community composition and functional plant traits over a four-year period on an extensive green roof. Journal of Environmental Management. 304, p.114154.
  34. Islam, T., Hamid, M., Nawchoo, I.A., & Khuroo, A.A. (2024). Leaf functional traits vary among growth forms and vegetation zones in the Himalaya. Science of The Total Environment. 906, p.167274.
  35. Jin, M., & Dickinson, R. E. (2010). Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environmental Research Letters. 5, 044004.
  36. Kaiser, H.F., (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika. 23(3), 187-200.
  37. Kumar, G., Upadhyay, S., Yadav, D.K., Malakar, S., Dhurve, P., & Suri, S. (2023). Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio‐functional properties: A review. Journal of Food Process Engineering. 46(6), p.e14238.
  38. Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology. 16(5), 545–556.
  39. Lavorel, S., Grigulis, K., Lamarque, P., Colace, M.P., Garden, D., Girel, J., Pellet, G and Douzet, R. (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology. 99(1), 135-147.
  40. Lello, J., & Hussell, T. (2008). Functional group/guild modelling of inter-specific pathogen interactions: a potential tool for predicting the consequences of co-infection. Parasitology. 135(7), 825-839.
  41. Li, Y., & Shipley, B. (2017). An experimental test of CSR theory using a globally calibrated ordination method. PLoS One. 12, e0175404. https://doi.org/10.1371/journal.pone.0175404.
  42. Li, Z, Chen, D., Cai, S., & Che, S. (2018). The ecological services of plant communities in parks for climate control and recreation—A case study in Shanghai, China. Plos one. 25, 13(4), e0196445. https://doi.org/10.1371/journal.pone.0196445
  43. Lin, T. P., Matzarakis, A., & Hwang, R. L. (2010). Shading effect on long-term outdoor thermal comfort. Building and Environment. 45(1), 213–21. https://doi.org/10.1016/j.buildenv.2009.06.002
  44. Lundgren, E.J., Bergman, J., Trepel, J., le Roux, E., Monsarrat, S., Kristensen, J.A., Pedersen, R.Ø., Pereyra, P., Tietje, M., & Svenning, J.C. (2024). Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities. Science. 383(6682), pp.531-537.
  45. Mastrogianni, A., Kiziridis, D.A., Karadimou, E., Pleniou, M., Xystrakis, F., Tsiftsis, S., & Tsiripidis, I. (2023). Community-level differentiation of Grime's CSR strategies along a post-abandonment secondary successional gradient. Flora. 308, p.152399.
  46. McNichol, B.H. (2023). Effects of Topography and Microclimate on Plant Community Structure in a Great Plains Refugial Forest (Doctoral dissertation, The University of Nebraska-Lincoln).
  47. McVicar, T. R., & Jupp, D. L. (1998). The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review. Agricultural Systems. 57, 399–468. URL: https://doi.org/10.1016/S0308-521X(98)00026-2
  48. Minder, J.R., Mote, P.W., & Lundquist, J.D. (2010). Surface Temperature Lapse Rates over Complex Terrain: Lessons from the Cascade Mountains. Geophys. Res.: Atmosph. 115 (D14), 1–13
  49. Mohamadi, S., & Bagheri, R. (2022). Hydrological response of a paired watershed to rainfall storm events in arid region: a study in Dehgin of Hormozgan province, Iran. Environmental Science and Pollution Research. 29(53), pp.80831-80848. https://doi.org/10.1007/s11356-022-21543-w
  50. Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., & Leishman, M. R. (2009). Global patterns in plant height. Journal of Ecology. 97, 923–932. https://doi.org/10.1111/j.1365-2745.2009.01526.x
  51. Moreira, A., Bremm, C., Fontana, D. C., & Kuplich, T. M. (2019). Seasonal dynamics of vegetation indices as a criterion for grouping grassland typologies. Science Agric. 76 (1), 24-32. DOI: http://dx.doi.org/10.1590/1678-992X-2017-0173.
  52. Muro, J., Strauch, A., Heinemann, S., Steinbach, S., Thonfeld, F., Waske, B., & Diekkrüger, B. (2018). Land surface temperature trends as indicator of land use changes in wetlands. International journal of applied earth observation and geoinformation. 1,70, 62-71. https://doi.org/10.1016/j.jag.2018.02.002
  53. Myint, S. W., Zheng, B., Talen, E., Fan, C., Kaplan, S., Middel, A., Smith, M., Huang, H. P., & Brazel, A. (2015). Does the spatial arrangement of urban landscape matter? Examples of urban warming and cooling in Phoenix and Las Vegas. Ecosystem Health and Sustainability. 1, 1(4), 1-5. https://doi.org/10.1890/EHS14-0028.1
  54. Neteler, M., (2010). Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data. Remote Sensing. 2, 333–351. URL: https://doi.org/10.3390/rs1020333
  55. Niu, Y., Zhou, J., Yang, S., Chu, B., Ma, S., Zhu, H., & Hua, L. (2019). The effects of topographical factors on the distribution of plant communities in a mountain meadow on the Tibetan Plateau as a foundation for target-oriented management. Ecological Indicators. 106, p.105532.
  56. Onoda, Y., Westoby, M., Adler, P. B., Choong, A. M. F., Clissold, F. J., Cornelissen, J. H. C., & Yamashita, N. (2011). Global patterns of leaf mechanical properties. Ecology Letters. 14, 301–312. https://doi.org/10.1111/j.1461-0248.2010.01582.x
  57. Peng, J., Ma, J., Liu, Q.Y., Liu, Y.X., Li, Y.R., & Yue, Y.Y. (2018). Spatialtemporal change ofland surface temperature across 285 cities in China:an urban-rural contrast perspective. Total Environ. 635, 487–497.
  58. Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., and Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167–234. https://doi.org/10.1071/BT12225
  59. Pierce, S. et al., (2016). A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct Ecol. 31, 444–457 (2016).
  60. Pierce, S., Negreiros, D., Cerabolini, B.E.L., et al., (2017). A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Ecol. 31,444–457.
  61. Pesaresi, S., Mancini, A., & Casavecchia, S. (2020). Recognition and Characterization of Forest Plant Communities through Remote-Sensing NDVI Time Series. Diversity. 12(8), 313. https://doi.org/10.3390/d12080313
  62. Poorter, H., Niinemets, U., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA):A meta-analysis. New Phytologist. 182, 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x
  63. Rippy, M.A., Krauss, L., Pierce, G., & Winfrey, B. (2021). Plant functional traits and viewer characteristics co-regulate cultural services provisioning by stormwater bioretention. Ecological Engineering. 168, p.106284.
  64. Sahani, N., (2021). Assessment of spatio-temporal changes of land surface temperature (LST) in Kanchenjunga Biosphere Reserve (KBR), India using Landsat satellite image and single channel algorithm. Remote Sensing Applications: Society and Environment. 1, 24, 100659. https://doi.org/10.1016/j.rsase.2021.100659
  65. Shi, Z., Li, K., Zhu, X., & Wang, F. (2020). The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology. 43, p.100877.
  66. Shirmardi, H. A., Ghaderi, S., Gholami, P., & Amozegar, L. (2013). The allelopathic effect of Artemisia aucheri Boiss on some seed germination properties of Bromus tomentellus Boiss and Bromus inermis Journal of Plant Ecosystem Conservation. 10, 1(2), 71-80.
  67. Sneyers, R., (1990). On the statistical analysis of series of observations. World Meteorological Organization, Technical Note. 143, Geneva, Switzerland 32.
  68. Stone, J.D., Merrigan, J.J., Ramadan, J., Brown, R.S., Cheng, G.T., Hornsby, W.G., Smith, H., Galster, S.M., & Hagen, J.A. (2022). Simplifying External Load Data in NCAA Division-I Men's Basketball Competitions: A Principal Component Analysis. Frontiers in Sports and Active Living. 4, p.795897.
  69. Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors, E., Ciais, P., et al., (2010). Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geoscience. 3(10), 722–727. https://doi.org/10.1038/ngeo950
  70. Van der Merwe, S., Greve, M., Olivier, B., & le Roux, P.C. (2021). Testing the role of functional trait expression in plant–plant facilitation. Functional Ecology. 35(1), 255-265.
  71. Wang, C., Li, Y., Myint, S. W., Zhao, Q., & Wentz, E. A. (2019). Impacts of spatial clustering of urban land cover on land surface temperature across Köppen climate zones in the contiguous United States. Landscape and Urban Planning. 192, 103668. https://doi.org/10.1016/j.landurbplan.2019.103668
  72. Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., & Villar, R. (2004). The worldwide leaf economics spectrum. Nature. 428, 821–827. https://doi.org/10.1038/nature02403
  73. Wu, X., Li, Z., Gong, L., Li, R., Zhang, X., & Zheng, Z. (2023). Ecological adaptation strategies of plant functional groups in the upper reaches of the Tarim River based on leaf functional traits. Environmental and Experimental Botany 215, 105-490.
  74. Xiao, R.b., Ouyang, Z. Y., Zheng, H., Li, W. F., Schienke, E. W., & Wang, X. K. (2007). Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. Journal of Environmental Sciences. 19(2), 250–256. https://doi.org/10.1016/S1001-0742(07)60041-2
  75. Zanzottera, M., Dalle Fratte, M., Caccianiga, M., Pierce, S., & Cerabolini, B.E.L. (2020). Community-level variation in plant functional traits and ecological strategies shapes habitat structure along succession gradients in alpine environment. Ecol. 21, 55–65. https://doi.org/10.1007/s42974-020-00012-9.
  76. Zhang, Y., Odeh, I. O., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation. 11(4), 256–264. https://doi.org/10.1016/j.jag.2009.03.001
  77. Zheng, B., Myint, S. W., & Fan, C. (2014). Spatial configuration of anthropogenic land cover impacts on urban warming. Landscape and Urban Planning. 1, 130, 104-11. https://doi.org/10.1016/j.landurbplan.2014.07.001
  78. Zheng, J., Arif, M., He, X., Ding, D., Zhang, S., Ni, X., & Li, C. (2022). Plant community assembly is jointly shaped by environmental and dispersal filtering along elevation gradients in a semiarid area, China. Frontiers in Plant Science. 13, p.1041742.
  79. Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning. 102(1), 54–63. https://doi.org/10.1016/j.landurbplan.2011.03.009