ارزیابی کارایی مدل بیلان‌آب روزانۀ Balansim-Spreadsheet در شبیه‌سازی رواناب حوزۀ آبخیز بهشت‌آباد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی طبیعت، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران

2 دانشیار گروه مهندسی طبیعت، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران

3 استادیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران

‎10.22052/deej.2025.255318.1072

چکیده

تخمین رواناب در حوزه‌های آبخیز کوهستانی، یک جنبۀ چالشی در هیدرولوژی است؛ به‌ویژه در مناطقی که ذوب برف به‌طور قابل توجهی بر جریان روزانه اثر می‌گذارد. هدف از مطالعۀ حاضر، بررسی بیلان‌آب و برآورد رواناب در حوزۀ آبخیز بهشت‌آباد است که به‌دلیل اهمیت آن به‌واسطۀ طرح انتقال آب از این حوزۀ آبخیز مورد ‌توجه قرار گرفته است. یکی دیگر از مشکلات معمول در حوزه‌های آبخیز کوهستانی نیز محدودیت داده است؛ لذا در این تحقیق، از مدل صفحۀ گستردۀ بیلان‌آب روزانه بر مبنای مخزن Balansim با حداقل دادۀ ورودی استفاده شد. سری زمانی داده‌های روزانه بارندگی، دما، تبخیر- تعرق پتانسیل و دبی در سال‌های 2000 تا 2020 مورد استفاده قرار گرفت. در این راستا، ابتدا با استفاده از ابزار آنلاین WHAT و روش فیلتر دیجیتال بازگشتی، جریان پایه از دبی کل روزانۀ مشاهداتی تفکیک شد. سپس با فرض رفتار مخزنی مؤلفه‌های هیدرولوژیکی، جریان سطحی و جریان پایه شبیه‌سازی شدند. براساس نتایج به‌دست‌آمده از ارزیابی مدل، این مدل در دورۀ واسنجی با ضریب کارایی نش- ساتکلیف 66/0، عملکرد خوب و با مقدار 64/0 در دورۀ اعتبارسنجی، عملکرد رضایت‌بخشی داشت. همچنین نتایج، نشان ‌از دقت قابل قبول مدل در برآورد جریان‌های کم و دقت پایین‌تر در مورد جریان‌های سیلابی داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance Evaluation of the Balansim-Spreadsheet Daily Water Balance Model in Simulating Runoff in the Beheshtabad Watershed

نویسندگان [English]

  • Samira Bayati 1
  • Khodayar Abdollahi 2
  • Sayed Hassan Alavinia 3
1 Natural Engineering Department, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, Iran
2 Associate Professor, Department of Natural Engineering, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, Iran
3 Assistant Professor, Department of Rangeland and Watershed Management, Faculty of Natural Resources and Earth Sciences, Kashan University, Kashan, Iran
چکیده [English]

Introduction: Water balance modeling with minimal input data is critical for mountain watersheds, where data scarcity often poses significant challenges to effective water resource management. These regions are characterized by complex hydrological processes influenced by topography, climate variability, and seasonal snowmelt, making accurate water balance assessments essential for sustainable management practices. Models that require minimal input data enable researchers and water managers to estimate key hydrological components—such as precipitation, evaporation, and runoff—without the need for extensive data collection. The Beheshtabad watershed, like many mountainous regions, faces significant challenges in water resource management due to its complex hydrological processes and limited data availability. Effective management of surface water resources is crucial for sustainable development, agricultural productivity, and ecological health. Traditional hydrological models often rely on extensive datasets, which can be difficult to obtain in remote or data-scarce areas. To address these challenges, this study employs a daily water balance model based on reservoir dynamics. The model aims to simulate the surface water balance of the Beheshtabad watershed using minimal input data. The results of this research are expected to provide valuable insights that can enhance water resource management strategies in similar data-limited environments.
Materials and methods: The methodology of this study comprises several key components. Daily runoff in the Beheshtabad watershed was estimated using the Balansim model, which requires only daily data on rainfall, temperature, potential evapotranspiration, and discharge. The analysis covered the period from 2000 to 2020, with two-thirds of the data used for model calibration and the remaining third for validation. To separate base flow from total daily flow observations, the study employed the WHAT software in combination with a recursive digital filter method. This approach enabled a clear distinction between base flow and surface flow, which is critical for accurately simulating the hydrological components of the watershed. The Balansim model operates under the assumption of reservoir behavior, simplifying the representation of water storage and release processes within the watershed. This assumption allows for an efficient and practical simulation of the watershed's hydrological dynamics, even with limited input data.
Results and discussion: The model's performance was evaluated using the Nash-Sutcliffe efficiency (NSE) coefficient, a widely accepted metric for assessing predictive accuracy in hydrological modeling. The results revealed a favorable NSE coefficient of 0.66 during the validation period, indicating that the model effectively captured the observed hydrological dynamics. Additionally, a satisfactory NSE coefficient of 0.64 was achieved during the calibration period, further reinforcing the model's reliability.
One of the model's notable strengths is its improved accuracy in estimating low flows, which is critical for understanding water availability during dry periods. This capability is particularly important for agricultural water management, as low flow conditions can significantly impact crop yields and irrigation practices. However, the model tended to underestimate flood flows, highlighting an area for future improvement. This limitation could pose challenges for flood management strategies, underscoring the need for further refinements to enhance the model's predictive accuracy during extreme weather events. The findings of this study demonstrate that the developed model holds significant promise for improving water resource management in data-scarce mountainous watersheds. By achieving a reliable water balance simulation with minimal input data, this research provides a valuable tool for decision-makers and water resource managers. The model's ability to simulate both base flow and surface flow dynamics offers a comprehensive understanding of the watershed's hydrological behavior, enabling more informed and effective management decisions.
Conclusion: This study successfully developed and validated a daily water balance model for the Beheshtabad watershed, demonstrating its ability to simulate hydrological processes effectively using minimal input data. The model's performance, as evidenced by favorable Nash-Sutcliffe efficiency (NSE) coefficients, highlights its potential as a practical tool for water resource management in data-limited mountainous regions.
The insights from this research contribute to the broader fields of hydrology and water resource management, offering a pathway for sustainable practices in similar contexts. By leveraging simple yet effective modeling techniques, stakeholders can better address the complexities of water management in the face of climate variability and increasing demand. This approach not only supports immediate water management needs but also promotes long-term sustainability in mountainous watersheds.
Future research should focus on refining the model to enhance its predictive accuracy, particularly for flood events. Incorporating additional data sources, improving simulation algorithms, and integrating advanced technologies such as remote sensing could address the current limitations in flood flow predictions. Additionally, establishing a comprehensive monitoring network would significantly improve data availability and model calibration efforts, further strengthening the model's applicability and reliability.

کلیدواژه‌ها [English]

  • Daily water balance
  • Beheshtabad watershed
  • Snow melt
  • Surface runoff
  • Reservoir model
  1. Adnan, R.M., Petroselli, A., Heddam, S., Santos, C.A.G., & Kisi, O., (2021). Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model. Stochastic Environmental Research and Risk Assessment, 35(3), 597-616.
  2. Alizadeh, A. (2015). Applied Hydrology. Astan Quds Razavi Publication, Mashhad. Iran.
  3. Artimani, M., Zeinivand, H., & Tahmasebipour, N. (2024). Simulation of water balance components using TOPKAPI-X distributed hydrological model (Case study: Kashkan basin). Iranian Journal of Soil and Water Research, 55(4), 637-651.
  4. Bayati, S. (2023). Development of a flexible model with capability of multi- site automatic calibration for daily component- based water balance simulation. PhD thesis, Shahrekord University. 110 pp.
  5. Bednář, M. & Marton, D. (2024). Developing a lumped rainfall-runoff model in daily timestep for the Central European regions: A case study of the Czech Republic. Environmental Modelling & Software, 179, p.106092.
  6. Chandel, S. & Hadda, M.S. (2017). Quantification of surface runoff in Patiala-Ki-Rao watersheds using modified NRCS model: a case study. Journal of Applied and Natural Science, 9(3), 1573-1581.
  7. Cirilo, J.A., Verçosa, L.F.D.M., Gomes, M.M.D.A., Feitoza, M.A.B., Ferraz, G.D.F. & Silva, B.D.M. (2020). Development and application of a rainfall-runoff model for semi-arid regions. Rbrh, 25, p.e15.
  8. Devia, G.K., Ganasri, B.P., & Dwarakish, G.S. (2015). A review on hydrological models. Aquatic Procedia, 4, 1001-1007.
  9. Eckhardt, K. (2008). A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology, 352(1-2), 168-173.
  10. Fraga, I., Cea, L., & Puertas, J., (2019). Effect of rainfall uncertainty on the performance of physically based rainfall–runoff models. Hydrological Processes, 33(1), 160-173.
  11. Gnann, S., Reinecke, R., Stein, L., Wada, Y., Thiery, W., Müller Schmied, H., Satoh, Y., Pokhrel, Y., Ostberg, S., Koutroulis, A., Hanasaki, N. (2023). Functional relationships reveal differences in the water cycle representation of global water models. Nature Water, 1(12), 1079-1090.
  12. Hammond, J.C., Simeone, C., Hecht, J.S., Hodgkins, G.A., Lombard, M., McCabe, G., Wolock, D., Wieczorek, M., Olson, C., Caldwell, T. & Dudley, R. (2022). Going beyond low flows: Streamflow drought deficit and duration illuminate distinct spatiotemporal drought patterns and trends in the US during the last century. Water Resources Research, 58(9), p.e2022WR031930.
  13. Jehanzaib, M., Ajmal, M., Achite, M., & Kim, T.W. (2022). Comprehensive review: Advancements in rainfall-runoff modelling for flood mitigation. Climate, 10(10), 147.
  14. Kult, J., Choi, W., & Choi, J. (2014). Sensitivity of the Snowmelt Runoff Model to snow covered area and temperature inputs. Applied Geography, 55, 30-38.
  15. McInerney, D., Thyer, M., Kavetski, D., Laugesen, R., Woldemeskel, F., Tuteja, N., & Kuczera, G., (2021). Improving the reliability of sub-seasonal forecasts of high and low flows by using a flow-dependent nonparametric model. Water Resources Research, 57(11), p.e2020WR029317.
  16. Nash, J.E., & Sutcliffe, J.V. (1979). River flow forecasting through conceptual models 1: a discussion of principles. Journal of Hydrology, 10, 282-290.
  17. Nasonova, O.N., Gusev, E.M., Kovalev, E.E., & Shurkhno, E.A. (2021). Global estimates of changes in the terrestrial water balance components in the context of possible climate changes. Water Resources, 48, 459-473.
  18. Ochoa-Sanchez, A., Crespo, P., Carrillo-Rojas, G., Sucozhanay, A., & Celleri, R. (2019). Actual evapotranspiration in the high Andean grasslands: A comparison of measurement and estimation methods. Frontiers in Earth Science, 7, 1-16.
  19. Patil, S. & Stieglitz, M. (2014). Modelling daily streamflow at ungauged catchments: what information is necessary?. Hydrological Processes, 28(3), 1159-1169.
  20. Raisi, M.B., Vafakhah, M., & Moradi, H. (2021). Modeling snowmelt runoff under CMIP5 scenarios in the Beheshtabad watershed. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45,1919-1927.
  21. Sadhwani, K. & Eldho, T.I. (2023). Assessing the vulnerability of water balance to climate change at river basin scale in humid tropics: Implications for a sustainable water future. Sustainability, 15(11), 9135.
  22. Salas, H.D., Builes-Jaramillo, A., Florian, C., Valencia, J., Tamayo, Y., Bermúdez, M., Rodríguez, M., & Echeverri, K. (2024). Projected effects of climate change in precipitation and streamflows of the Upper Orinoco River Basin from global and regional climate models. Journal of Water and Climate Change, p.jwc2024659.
  23. Shoaib, M., Shamseldin, A.Y., Khan, S., Sultan, M., Ahmad, F., Sultan, T., Dahri, Z.H., & Ali, I. (2019). Input selection of wavelet-coupled neural network models for rainfall-runoff modelling. Water resources management, 33, 955-973.
  24. Sitterson, J., Knightes, C., Parmar, R., Wolfe, K., Avant, B., & Muche, M. (2018). An overview of rainfall-runoff model types. 9thInternational Congress on Environmental Modelling and Software. Collins, Colorado, USA.
  25. Slieman, A.A. & Kozlov, D. (2023). Verification of MIKE 11-NAM Model for runoff modeling using ANN, FIS, and ARIMA methods in poorly studied basin. In E3S Web of Conferences (Vol. 401, p. 01035). EDP Sciences.
  26. Timbadiya, P.V., Patel, P.L., Singh, V.P., & Sharma, P.J. (Eds.). (2023). Hydrology and Hydrologic Modelling: Proceedings of 26th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2021) (Vol. 312). Springer Nature.
  27. Towner, J., Cloke, H.L., Zsoter, E., Flamig, Z., Hoch, J.M., Bazo, J., Coughlan de Perez, E., & Stephens, E.M. (2019). Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin. Hydrology and Earth System Sciences, 23(7), 3057-3080.
  28. Tummala, V. (2003). Hydrology of the Beaver Creek watershed using the TR-20 model and the HECHMS program. West Virginia University.
  29. Valipour, M. (2015). Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications, 22(3), 592-598.
  30. Vasiliades, L. & Mastraftsis, I. (2023). A monthly water balance model for assessing streamflow uncertainty in hydrologic studies. Environmental Sciences Proceedings, 25(1), 39.
  31. Vaze, J., Jordan, P., Beecham, R., Frost, A., & Summerell, G. (2012). Guidelines for rainfall-runoff modelling: Towards best practice model application. pp. 47.
  32. Wu, C.L. & Chau, K.W. (2011). Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, 399(3-4), 394-409.
  33. Xu, C.Y. (2002). Hydrologic models. Sweden: Uppsala University Department of Earth Sciences Hydrology. Vol. 2.
  34. Yenehun, A., Dessie, M., Azeze, M., Nigate, F., Belay, A.S., Nyssen, J., Adgo, E., Van Griensven, A., Van Camp, M., & Walraevens, K. (2021). Water resources studies in headwaters of the Blue Nile Basin: a review with emphasis on lake water balance and hydrogeological characterization. Water1, 3(11), 1469.
  35. Yu, S., Do, H.X., Van Dijk, A.I., Bond, N.R., Lin, P., & Kennard, M.J. (2020). Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks. Hydrology and Earth System Sciences, 24(11), 5279-5295.
  36. Zare Bidaki, R., Moradi, B., & Bahrami, H. (2021). Locating susceptible areas for short earth fill dams (Case study: Beheshtabad Watershed). Management of Natural Ecosystems, 1(1), 37-48.
  37. Zhou, Q., Chen, L., Singh, V.P., Zhou, J., Chen, X., & Xiong, L. (2019). Rainfall-runoff simulation in karst dominated areas based on a coupled conceptual hydrological model. Journal of Hydrology, 573, 524-533.