مدل‌سازی شاخص خشکسالی SPI با استفاده از مدل‌ استوکاستیک ARIMA (مطالعۀ موردی: شهرستان بهبهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم الانبیاء بهبهان، بهبهان، ایران

2 گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه خاتم الانبیا (ص) بهبهان

3 گروه بیابان‌زدائی، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران

‎10.22052/deej.2025.255785.1084

چکیده

خشکسالی هواشناسی ازجمله بلایای طبیعی است که می‌توان آن را دورۀ طولانی کاهش بارندگی دانست که تقریباً در تمام مناطق آب‌وهوایی رخ می‌دهد. شاخص SPI معمول‌ترین و پرکاربردترین شاخص بررسی خشکسالی هواشناسی است. سری‌ زمانی شاخص مذکور را می‌توان برای توصیف شدت رویدادهای خشکسالی و همچنین برای تخمین مقادیر احتمالی خشکسالی در آینده به کار برد. مدل‌های یکپارچۀ خودهمبسته مانند ARIMA متداول‌ترین مدل‌ها در تحلیل سری‌های زمانی هستند. در پژوهش حاضر، شاخص خشکسالی هواشناسی SPI با استفاده از داده‌های بارندگی مربوط به دورۀ زمانی 1994 تا 2022 محاسبه شد. سپس شاخص مذکور در مقیاس‌های سالانه، شش‌ماهه و نه‌ماهه با استفاده از مدل ARIMA برای ارائۀ مدل‌های مناسب برای پیش‌بینی خشکسالی در شهرستان بهبهان مدل‌سازی شدند. نتایج نشان داد مدل ARIMA(5,0,11) با مقدار 64/0=R2 و خطاهای 81/0=RMSE، 66/0=MAE و 27/213= MAPE در مرحلۀ اعتبارسنجی، بهترین مدل برای مدل‌سازی سری زمانی شاخص خشکسالی سالانه است. همچنین، مدل ARIMA(2,0,5) به‌عنوان مدل برتر برای مدل‌سازی سری زمانی شاخص خشکسالی SPI شش‌ماهه انتخاب شد. مقدار R2 این مدل برابر 8/0 و خطاهای RMSE، MAE و MAPE آن به‌ترتیب برابر با 84/0، 65/0 و 31/100 بود. همچنین به‌دلیل عدم نرمال بودن باقی‌مانده‌های مدل‌های منتخب، مدل مناسبی برای سری زمانی SPI نه‌ماهه پیشنهاد نگردید. پژوهش‌ حاضر با مدل‌سازی پدیده‌ای مخرب خشکسالی می‌تواند به‌عنوان راهنمایی برای مدیریت منابع آب طی دوره‌های خشکسالی در اختیار سیاست‌گذاران و برنامه‌ریزان آب منطقه قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling SPI Drought Index Using ARIMA Stochastic Model (A Case Study of Behbahan City)

نویسندگان [English]

  • Homayoun Nowruzi Khub 1
  • NASIM ARMAN 2
  • Sareh Hashem Geloogerdi 3
1 Department of Rangeland and Watershed Management, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
2 Behbahan Khatam Alanbia University of Technology, Department of Watershed, Faculty of Natural Resources
3 Department Combating Desertification, Faculty of Natural Resources and earth science, University of Kashan, Kashan, Iran
چکیده [English]

Introduction: As one of the greatest natural disasters faced by mankind since time immemorial, drought can be defined as a long period of reduced precipitation (a season or a year, for instance) occurring in almost all climate zones, including areas with high and low precipitation rates. Moreover, drought is a globally intensifying phenomenon, with no region or country in the world remaining safe from its consequences. On the other hand, the extent, frequency, intensity, and duration of drought are increasing in many parts of the world due to climate change. In addition, the phenomenon influences a diverse range of biophysical resources in catchment areas, including the discharge and sedimentation of rivers. Therefore, awareness of the drought status, prediction of drought, and zoning of its severity can significantly reduce the risk of its potential damage.
 
Materials and Methods: Covering an area of ​​3516 km2, Behbahan is located in the southeast of Khuzestan province between 50˚ to 50˚ 21´ east longitude and 30˚ 30´ to ˚31 north latitude. Various indicators have so far been developed for monitoring drought, each of which considers one or more parameters contributing to drought. As a widely applied drought index worldwide, The Standardized Precipitation Index (SPI) time series can be used to describe the intensity of historical and current drought events at a site and to estimate the potential prospective magnitude of drought.
Auto-correlated integrated ARIMA model is frequently used in analyzing time series. The model was first proposed by Box and Jenkins when studying time series, inspiring many related models that have since been developed and applied in various branches of geosciences. To investigate and predict drought in Behbahan City, this study sought to model annual SPI time series, six-month SPI, and nine-month SPI using the ARIMA model.
 
Results: The results indicated that the ARIMA (5,0,11) was the best choice for modeling annual drought index time series in the validation stage, with its errors being R2=0.64 and RMSE=0.81 MAE=0.66 and MAPE=213.27 errors. The ARIMA (2,0,5) was also found to be the best model for modeling the six-month SPI drought index time series, where the R2 value of the model was equal to 0.50 (greater than that of other models), and its RMSE, MAE, and MAPE errors were reports as 0.84, 0.64 and 100.31, respectively (less than those of other models). Moreover, due to the non-normality of the residuals of the selected models, a suitable model was not found for modeling the nine-month SPI time series. Therefore, other methods such as wavelet analysis are recommended to be used in this regard.
 
Discussion and Conclusion: As a complex and often underestimated phenomenon, drought strongly influences different aspects of human life. Therefore, early prediction of drought plays a crucial role in strategic planning and management of water resources. In this regard, time series models are considered a suitable tool for predicting climatic events. This study used the time series of the SPI index to model drought in Behbahan City at annual, six-month, and nine-month scales, seeking to identify appropriate models in this regard. It appears that managers and relevant decision-makers should take similar studies into account to access a clear analysis of the region and develop optimal plans for the management of water resources. This is especially important in Iran, where a large area of the country is characterized by arid and semi-arid climates. Considering that the phenomenon of drought can be predicted and managed, it is necessary to implement basic measures to reduce the adverse effects of drought in the coming years.

کلیدواژه‌ها [English]

  • Behbahan
  • Drought
  • Modeling
  • SPI index
  • Time Series
  1. Adeli, B., Moradi, H., & Keshavarz, M. (2016). Social Impacts of Short-term Droughts in Rural Areas: A Case Study of Dodangeh Sub-district, Behbahan County of Iran. Village and Development, 18(4), 133-151. doi:10.30490/rvt.2016.59450
  2. Aghdar, H., Shayesteh, K., Mohammadyari, F., & Rangzan, K. (2020). Evaluation of spatial distribution of earth surface temperature in Behbahan during 2000-2014 period using thermal remote sensing. Human Geography Research, 52(3), 817-832. doi: 10.22059/jhgr.2019.236547.1007487
  3. Achite, M., Bazrafshan, O., Azhdari, Z., Walega, A., Krakauer, N., & Caloiero, T. (2022). Forecasting of SPI and SRI Using Multiplicative ARIMA under Climate Variability in a Mediterranean Region: Wadi Ouahrane Basin, Algeria. Climate, 10(3), 36. https://doi.org/10.3390/cli10030036
  4. Armin, M., Rostami, H., & Ghorbannia Kheybari, V. (2021). Analysis and prediction of drought using time series in a number of rain gauge stations in Kheyrabad Basin, Kohgiluyeh and Boyerahmad province. Extension and Development of Watershed Management, 9(34), 50-67.
  5. Box, G., & Jenkins, G., (1976). Time series analysis forecasting and control. Holden-Day, San Francisco, USA.
  6. Byzedi, M., Siosemardeh, M., & Asragah, A. (2016). Prediction and Analysis of Meteorological Drought Based on Time Series (Case Study: SALMAS Watershed). Environment and Water Engineering, 2(4), 346-359.
  7. Dastorani, M., Mirzavand, M., Dastorani, M.T. & Sadatinejad, S, J. (2016). Comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition. Natural Hazards, 81, 1811–1827. https://doi.org/10.1007/s11069-016-2163-x
  8. Derikvand, E., Reyhani niya, B., Moradkhani, M. A., & Maleki, H. (2014). Modeling Dovirej River Discharge Variations Using Temporal Series Analysing. Quarterly Journal on Water Engineering, 1(2), 1-12.
  9. Dodangeh, A., Abedi Koupai, J., & Gohari, S. A. (2012). Application of Time Series Modeling to Investigate Future Climatic Parameters Trend for Water Resources Management Purposes. Journal of Water and Soil Science, 16(59), 59-74. URL: http://jstnar.iut.ac.ir/article-1-2198-fa.html
  10. Ebrahimi, M. S., Asadikhoob, M., & Khatoun abadi, S. A. (2020). Spatial Analysis of Agricultural Development in Behbahan. Village and Space Sustainable Development, 1(2), 41-60. doi: 10.22077/vssd.2020.3784.1008
  11. Ehteshami, M., Khorasani, M., Ghadimi, H., & Hayatbini, N. (2017). Analysis of Temporal and Periodic Changes of Groundwater Depth and Nitrate Concentration Using Time Series Modeling (Case Study: Kabudarahang Plain). Amirkabir Journal of Civil Engineering, 49(2), 285-294. doi: 10.22060/ceej.2015.415
  12. Ghahreman, N., & Gharehkhani, A. (2011). Evaluation of random time series models in estimating pan evaporation (case study: Shiraz station). Journal of Water Research in Agriculture, 25(1), 75-81. SID. https://sid.ir/paper/196848/fa
  13. Gheisoori, M., Soltani-Gerdefaramarzi, S., & Ghasemi, M. (2018). Investigation and prediction of the changing trend of climate parameters on Discharge (Case Study: Godarkhosh Subbasin). Journal of Natural Environmental Hazards, 7(17), 137-154. doi: 10.22111/jneh.2017.19571.1222
  14. Gheysouri, M., Kalehhouei, M., Saberi, A., & Mohammadi, P. (2022). Application of ARIMA time series models for forecasting meteorological drought in Tehran province. Extension and Development of Watershed Management, 10(36), 60-70.
  15. Ghorbani, H., Vali, A., & Zarepour, H. (2019). Analysis of the Climatological Drought Trend Variations Using Mann-Kendall, Sen and Pettitt Tests in Isfahan Province. Journal of Spatial Analysis Environmental Hazards, 6(2), 129-146. URL: http://jsaeh.khu.ac.ir/article-1-2889-fa.html
  16. Habibi, B., Meddib, M., Torfsc, P. J.J.F., Remaoun, M., & Van Lanenc, H. A. J. (2018). Characterisation and prediction of meteorological drought usingstochastic models in the semi-arid Chéliff–Zahrez basin (Algeria). Journal of Hydrology: Regional Studies, 16, 15-31. https://doi.org/10.1016/j.ejrh.2018.02.005
  17. Hajivandpaydari, S., Yazdanpanah, H., & Andarzian, S. B. (2022). Investigation of regional effects of climate change phenomenon in the north of Khuzestan province using HadCM3 model under LARS-WG exponential comparison in the statistical period of 2030-2010 and 2050-2030. Geography and Human Relationships, 5(1), 299-314. doi: 10.22034/gahr.2022.330821.1669
  18. Han, P., Wang, P. X., Zhang, S. U. & Zhu, D. H. (2010). Drought forecasting based on the remote sensing data using ARIMA models. Mathematical and Computer Modelling, 51, 1398-1403. DOI:10.1016/j.mcm.2009.10.031
  19. Hashem Geloogerdi., S, Vali, A., & Sharifi, M. R. (2023). Desertification simulation using wavelet and box-jenkins time series analysis based on TGSI and albedo remote sensing indices. Journal of Arid Environments, 219, 105069. https://doi.org/10.1016/j.jaridenv.2023.105069
  20. Hejabi, S., & Bazrafshan, J. (2013). Evaluation of Six Types of Stochastic Models Skill in Modeling and Forecasting the Standardized Precipitation Index Time Series. Journal of Water Research in Agriculture, 27(3), 429-454. doi: 10.22092/jwra.2013.128847
  21. Hisdal, H., & Tallaksen, L.M. (2003). Estimation of regional meteorological and hydrological drought characteristics: a case study for Denmark. Journal of Hydrology, 281(3), 230-247.
  22. https://www.fao.org/land-water/water/drought/droughtandag/en/Karabulut, M. (2015). Drought analysis in Antakya-Kahramanmaraş Graben, Turkey. Journal of Arid Land, 7(6), 741–754. DOI:10.1007/s40333-015-0011-6
  23. Karamouz, M., & Araghinejad, S. (2010). Advanced Hydrology: Industrial University of Amir Kabir Poly Technics.
  24. Rezanejad Keshteli, M., Babanezhad, M., & Amini, A. (2016). Fitting the Seasonal Time Series Model to the rivers discharge in time domain (Case Study: Atrak River). Journal of Water and Soil Conservation, 22(6), 307-315. 20.1001.1.23222069.1394.22.6.20.2
  25. Khorrami, M., & Bozorgnia, A. (2017). Time series analysis with Minitab software. Sokhan gostar press, 336 pages.
  26. Kumar, P., Shah, S.F., Uqaili, M.A., Kumar, L., & Zafar, R.F. (2021). Forecasting of Drought: A Case Study of Water-Stressed Region of Pakistan. Atmosphere, 12, 1248. https://doi.org/10.3390/ atmos12101248
  27. Liu, Q., Zhang, G., Ali, S., Wang, X., Wang, G., Pan, Z., & Zhang, G. (2019). SPI-based drought simulation and prediction using ARMA-GARCH model. Applied Mathematics and Computation, 355, 96-107. https://doi.org/10.1016/j.amc.2019.02.058
  28. Liu, C., Yang, C., Yang, Q., & Wang, J. (2021). Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Scientific Reports, 11, 1280. https://doi.org/10.1038/s41598-020-80527-3
  29. McKee, T. B, Doesken, N. J, & Kleist, J., 1995. Drought monitoring with multiple time scales. 9th Conference on Applied Climatology. USA.
  30. Mirzavand, M., & Ghazavi, R. (2015). A Stochastic Modelling Technique for Groundwater Level Forecasting in an Arid Environment Using Time Series Methods. Water Resour Manage, 29, 1315–1328 https://doi.org/10.1007/s11269-014-0875-9
  31. . Mosaedi, A., & Ghabaei Sough, M. (2011). Modification of Standardized Precipitation Index (SPI) Based on Relevant Probability Distribution Function. Water and Soil, 25(5). 1206-1216. doi: 10.22067/jsw.v0i--.11258I (In Persian)
  32. Orismology, I.R., Belle, J.A., Orismology, Y.M., Olusola, A.O., & Ololade, O.O. (2022). Drought: A Common Environmental Disaster. Atmosphere, 111.
  33. Papacharalampous, G., Tyralis, H., & Koutsoyiannis, D. (2018). Predictability of monthly temperature and precipitation using automatic time series forecasting methods. Acta Geophysica. 66(4), 807–831.http://dx.doi.org/10.1007/s11600-018-0120-7
  34. Raziei, T. (2016). Drought forcasting in eastern and central arid and semi-arid regions of Iran using time series and Markov chainmodels. Watershed Engineering and Management, 8(4), 454-477. doi: 10.22092/ijwmse.2016.107181
  35. Reichhuber, A., Svoboda, M., King-Okumu, C., Mirzabaev, A., Vicente-Serrano, S.M., Srinivasan, R., et al. (2022). Multiscale approaches for the assessment and monitoring of social and ecological resilience to drought. A report of the science-policy interface. Bonn, United Nations Convention to Combat Desertification. Available at https://www.unccd.int/resources/reports/multiscale-approaches- assessment-and-monitoring-social-and-ecological-resilience (visited 5 June 2023).
  36. Rezaiy, R., & Shabri, A. (2023). Drought forecasting using W-ARIMA model with standardized precipitation index. Journal of Water and Climate Change, 14(9), 3345–3367. https://doi.org/10.2166/wcc.2023.431.
  37. Roushangar, K., Ghasempour, R., & Nourani, V. (2021). The potential of integrated hybrid pre-post-processing techniques for short- to long-term drought forecasting. Journal of Hydroinformatics, 23(1), 117–135. https://doi.org/10.2166/hydro.2020.088
  38. Sabzevary, Y., & Abedi koupaei, J. (2022). Trend and Time Series Analysis of Reference Evapotranspiration (Case Study: Khorram Abad Plain). Extension and Development of Watershed Management, 10(37), 35-46.
  39. Shafiei, M., Ghahraman, B., Ansari, H., & Sharifi, M. B. (2011). Stochastic Simulation of Drought Severity Based on Palmer Index. Water and Irrigation Management, 1(1), 1-13.
  40. Shaukat, M. H., Hussain, I., Faisal, M., Al-Dousari, A., Ismail, M., Shoukry, A. M., Elashkar, E. E. & Gani, S. (2020). Monthly drought prediction based on ensemble models. PeerJ Life and environment, 8, e9853.

https://doi.org/10.7717/peerj.9853

  1. Teymouri yeganeh, L., & Teymouri yeganeh, M. (2021). Application of time series model to estimate monthly rainfall in Kermanshah province. Journal of Climate Research, 1399(44), 121-132.
  2. (2022). Drought in Numbers 2022 - restoration for readiness and resilience (COP 15). Abidjan: Author.
  3. Xu, D., Ding, Y., Liu, H., Zhang, Q., & Zhang, D. (2022). Applicability of a CEEMD–ARIMA Combined Model for Drought Forecasting: A Case Study in the Ningxia Hui Autonomous Region. Atmosphere, 13, 1109. https://doi.org/3390/atmos13071109
  4. Zhang, Y., Li, W., Chen, Q., Pu, X., & Xiang, L. (2017). Multi-models for SPI drought forecasting in the north of Haihe River Basin, China. Stochastic Environmental Research and Risk Assessment, 31(10), 1-11. https://doi.org/10.1007/s00477-017-1437-5
  5. Ziaeiasl, F., & Lo Alizadeh, M. (2012). Investigation of droughts situation in Khuzestan using standard rainfall index (SPI). In 1st National Conference on Agriculture in Hard Environmental Conditions, 10 May 2012. Islamic Azad University, Ramhormoz, Iran. https://civilica.com/doc/351945/
  6. Zohrabzadeh, F., & Eslami, H. (2017). Temporal and Spatial variability Analysis of Drought Hazard in Khuzestan Province Using Standardized Precipitation Index (SPI). Water Resources Engineering Journal, 5(2), 101-112. https://journals.iau.ir/article_536702.html?lang=en