شناسایی مناطق مستعد تشکیل مئاندر با استفاده از مدل‌های رگرسیونی لجستیکی و SVM(مورد مطالعه: بخشی از رودخانۀ خرم‌آباد)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان

2 استاد گروه مهندسی آبخیزداری،دانشکده منابع طبیعی،دانشگاه لرستان

3 استادیار گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرم‌آباد، لرستان، ایران

‎10.22052/deej.2025.255259.1069

چکیده

به‌منظور مدیریت رودخانه، بررسی الگوی مورفولوژیکی رودخانه‌ها برای درک بهتر شرایط کنونی و پتانسیل تغییرات احتمالی آن‌ها در آینده ضروری است. هدف این تحقیق، تهیۀ نقشۀ مناطق مستعد تشکیل مئاندر با استفاده از مدل رگرسیونی لجستیکی کرنال (KLR)، رگرسیونی لجستیکی کرنال بگینگ (BKLR) و ماشین‌ بردار پشتیبان (SVM) در بخش شمالی رودخانۀ خر‌م‌آباد است. در این تحقیق، ابتدا نقشه‌های عوامل مؤثر بر پیچان‌رودی‌‌ شدن شامل کاربری اراضی، زمین‌‌شناسی و سنگ‌‌شناسی، مدل رقومی‌ ارتفاع، شیب و جهت‌ شیب، گسل، فاصله از جاده، موقعیت توپوگرافی، رطوبت توپوگرافی، ناهمواری زمین، انحنای کلی و انحنای پروفیل توسط نرم‌افزارهای ENVI، Arc GIS و SAGA-GIS فراهم شدند. سپس لایه‌های تهیه‌شده به‌عنوان داده‌‌های ورودی مدل به‌همراه 70 نقطه از رودخانه که ازطریق نقشه‌برداری برداشت ‌شده بودند، به‌عنوان داده‌های خروجی وارد مدل شدند. برای مدل‌سازی، 70 درصد داده‌ها در مرحلۀ آموزش و ‌30 درصد در مرحلۀ آزمایش استفاده شدند. به‌منظور انتخاب بهترین مدل برای تهیۀ نقشۀ پتانسیل پیچان‌رودی شدن، از معیارهای RMSE، MAPE، NS و CORR استفاده شد. درنهایت روش SVM با حداقل مقادیر 15/0 و 2/0 به‌‌ترتیب برای RMSE و MAPE و حداکثر مقادیر 83/0 و 85/0 به‌‌ترتیب برای NS و CORR نسبت‌ به دیگر روش‌ها، دقت برآوردی بیشتری داشت. براساس نتایج می‌توان از نقشۀ مناطق مستعد تشکیل پیچان‌رود به‌عنوان مبنا برای مدیریت بهتر سواحل استفاده کرد؛ به‌طوری‌که می‌توان اقدامات حفاظتی و اتخاذ تصمیمات مدیریتی مناسب برای کنترل تغییرات پیچان‌رودی شدن رودخانه و جلوگیری از خسارات به تأسیسات کناره‌های رودخانه‌ها اعمال نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identifying Meander Formation-Prone Areas Using Logistic Regression and SVM Models: A Case Study of Part of Khorramabad River

نویسندگان [English]

  • Yahya Karimi 1
  • Ali Haghizadeh 2
  • Alireza Sepahvand 3
1 Department of Range and Watershed Management Engineering, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran
2 Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran
3 Associate Professor, Department of Range and Watershed Engineering, Faculty of Natural Resources, Lorestan University.
چکیده [English]

Introduction: Analyzing the morphological patterns of rivers is crucial for better comprehension of the rivers’ current status and their potential for prospective alterations, thereby enabling effective river management. Meandering is one of the most important river issues that influences human activities along riverbanks. Therefore, this study sought to prepare the map of meander formation-prone areas using Kernel Logistic Regression (KLR), Bagging Kernel Logistic Regression (BKLR), and Support Vector Machine (SVM) models in the northern part of Khorramabad River, Lorestan Province.
 
Materials and methods: The data used in this study included the land use data extracted from Sentinel-2 satellite images, digital elevation model, slope and aspect, geology, and lithology, distance from the fault, distance from the road, topographic wetness index, and some geometric attributes such as topographic position index, profile curvature index, plain curvature index, and terrain ruggedness index, together with the data obtained from field surveys. To this end, a Sentinel-2 satellite image of the study area taken on 15/05/2021 with less than 10% cloud cover and no geometric errors was extracted from the European Space Agency website. Moreover, pre-processing (geometric and radiometric) of the image was performed in ENVI5.3 software and SNAP software, which are specifically designed for processing Sentinel satellite images. Then, atmospheric correction was applied using the Sen2Cor plugin in SNAP software. Subsequently, land use was estimated using a supervised maximum likelihood classification method based on pixel-level training samples. To study meandering in the northern part of the Khorramabad River, a 200-meter buffer zone was considered based on river topography, agricultural lands, access network, and other relevant factors. All input layers in Arc GIS and SAGA-GIS were clipped based on the 200-meter buffer map and entered into the model. On the other hand, 70% of the total data collected for meandering analysis was used for training the model and the remaining 30% was used for testing the model. It should be noted that the training samples used in this study consisted of samples of meandered cases along the studied waterway. Finally, to compare the performance of different models and select the best one for generating meandering potential maps, RMSE, MAPE, NS, and CORR error metrics were used.
 
Results: This study investigated the potential of the Khorramabad River for meandering and meander formation. To analyze different parts of the river, three main segments were designated, including the northern part consisting of kilometers 0 to 4, the middle part consisting the kilometers 4 to 8, and the southern part consisting the kilometers 8 to 14. The meandering potential was generally assessed in all three parts mentioned above. Accordingly, the highest level of meandering was observed in the middle and southern parts of the river. On the other hand, most of the meanders found in the northern part were well-developed and stable, as they are located in mountainous areas, thus being relatively tough and erosion-resistant. In the coastal zone, due to the soft and erodible nature of the sediments, meandering may expand, and meanders can develop into horseshoe shapes, an example of which can be observed in the middle part of the river, i.e., at kilometer 8.5. As the topographic position index along the river displays a concave pattern, this factor tends to promote meandering both in the longitudinal and lateral directions of the river. However, in areas with a convex pattern, the factor hinders meandering.
The high numerical value of the topographic wetness index along the banks of the Khorramabad River which indicates high moisture and wetness conditions makes the banks susceptible to landslides and erosion, which in turn contributes to meandering. Moreover, it can be argued that the overall condition of convex curvature in Khorramabad River and its floodplain has contributed to a decrease in meandering, as the flow velocity is higher in convex bends compared to the concave ones, thereby acting as an inhibiting factor for meandering. While the curvature of the profile varies at nearly every pixel level, its values tend towards negative in parts where the river is located near ridges, indicating increased erosion. Conversely, positive values suggest increased sedimentation due to a decrease in flow velocity.
Characterized by simpler conditions, the Kernel Logistic Regression Method examines areas with the potential for meandering, thus selecting a smaller and narrower extent for prediction. In contrast, the Support Vector Machine Method acts more strictly and selects a broader range. However, the method is considered to be more accurate, as RMSE and MAPE evaluation statistics bear the minimum values of 0.15 and 0.20, respectively, while the NS and CORR statistics enjoy the maximum values of 0.83 and 0.85 compared to other methods, respectively.
 
Conclusion: Meandering in the river located north of Khorramabad is a process influenced by geomorphological and hydrological features, leading to agricultural land degradation, reduced production, and increased suspended sediment load. From a geomorphological perspective, this study can play a significant role in river engineering. Therefore, activities such as channel modification, shoreline protection, dredging, and sand mining cannot be carried out without knowledge of river engineering.
 

کلیدواژه‌ها [English]

  • Meandering
  • Khorramabad River
  • Riverbank
  • Remote sensing
  • Land Use
  • SAGA-GIS
  1. Alai Taleghani, M., Hashi, F., & Ahmadi Malavardi, M. (2012). Evaluation of the human role in the bank erosion and lateral expansion of the meanders of the Gamasiab river in Biston Plain. Geography and Environmental Sustainability, 6, 107-120. [In Persian]
  2. Al-Madrasi, S.A., Khabazi, M., Aliai, & A., Shahbazi, M. (2017). Investigating the role of influencing factors on the twisting and changes of Dalki River using remote sensing and geographic information system. Geography and Environmental Planning, 29 (1), 165-176. [In Persian]
  3. Amini, H., Monegaglia, F., Shakeri, R., Tubino, M. & Zolezzi, G. (2024). Meanders on the move: Can AI-based solutions predict where they will be located?. Water, 16(17), 2460.
  4. Breiman L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
  5. Bui, D.‌T., Ho, T.‌C., Pradhan, B., Pham, B.T., Nhu, V.‌H., & Revhaug, I. (2016). GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environmental Earth Sciences, 75(14), 1101.
  6. Baboli Moakher, H., & Negahban, S. (2021). Investigating land surface form characteristics based on morphometric indices and using GIS, case study: Fahlian watershed. Geography (Quarterly Scientific Research and International Journal of Geographical Society of Iran), (19) 68.
  7. Chepi, K., Talebpour, D., & Shirzadi, A. (2017). Comparison of logistic regression and Bayesian logistic regression models in order to predict the location of mass movements in Kurdistan province. Quantitative Geomorphology Research, 7(2), 60-81. [In Persian]
  8. Dai, F.C., & Lee, C.F. (2002). Landslide Characteristics and Slope in Stability Modeling using GIS Lantau Island Hong Kong. Geomorphology, 42, 213-228.
  9. Eshghi, P., Farzad Mehr, J., Dastorani, M.T., & Arab Asadi, Z. (2016). Investigating the effectiveness of intelligent models in estimating river suspended sediments (case study: Baba Aman watershed, North Khorasan). Research paper on watershed management, 7 (14): 95-88. [In Persian]
  10. Gregory, K.J. (2006). The human role in changing river channels. Journal of Geomorphology, 79,172-191.
  11. Gu, L., Zhang, S., He, L., Chen, D., Blanckaert, K., Ottevanger, W., & Zhang, Y. (2016). Modeling flow pattern and evolution of meandering channels with a nonlinear model. Water, 8(10): 418. [In Persian]
  12. Güneralp, I., & Rhoads‌, B.L. (2010). Spatial autoregressive structure of meander evolution revisited. Geomorphology, 120, 91-106.
  13. Jafari Rudsari, M., Jalali, S., Samadi Ghashlaghchayi, M., & Samadi Arghini, H. (2016). Morphometric analysis of the Gorganrood basin using GIS. National Geospatial Conference.
  14. Kumar, S. S., Pandey, M., & Shukla, A. K. (2024). Spatio-temporal analysis of riverbank changes using remote sensing and geographic information system. Physics and Chemistry of the Earth, Parts A/B/C136, 103692.
  15. Lee, S.A. (2004). Verification of spatial logisticregression for landslide susceptibility analysis: Acasestudy of Korea. Geomorphology, 44, 15-18.
  16. Lee, T., Park, J., Hwang, S., & Singh, V. (2023). Nonparametric estimation method for river cross-sections with point cloud data from UAV photography U River-X version 1.0 methodology development. Model Dev. Discuss. https://doi.org/10.5194/gmd-2023-57, 2023. [preprint]
  17. Mokhtari, M.H., & Najafi, A. (2016). Comparison of classification methods of support vector machine and artificial neural network in extracting land uses from Landsat TM satellite images. Journal of Water and Soil Sciences, 19, (72). [In Persian]
  18. Mostafazadeh, R., Esfandyari Darabad, F., Naseri, A., Abyat, A., & Adhami, M. (2023). Determining the fractal pattern in a reach of Qharesou river, Ardabil province, Northwest of Iran.  Hydrogeomorphology10(37), 97-81. [In Persian]
  19. Naseri, N., Shayan, S., & Sharifi Kia, M. (2016). Analysis of morphological factors in changes in the spatial and spatial pattern of Alvand River. Geographical Research Quarterly. No.1. [In Persian]
  20. Nath, D. A., & Ghosh, D. S. (2024). Geo-Spatial Analyzes Meandering Rivers, Assessing Past and Future Impacts on Bank Landforms and Lulc Changes. Available at SSRN 4687790.
  21. Nohegar, A., & Yamani, M. (2012). Investigation of the geomorphological situation of Pichan River and its role in the erosion of the Minab River bed and banks (downstream of the Minab Dam). Geographical Research Quarterly, 51. [In Persian]
  22. Rahmati, O., Haghizadeh, A., Pourghasemi, H.R., & Nourmohammadi, (2016). Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Nat Hazards, 82, 1231-1258.
  23. Rajabi, M., Raushi, S., & Akbari, B. (2018). Investigating the meandering pattern of the Aji Chai river using central angle indices and curvature coefficient (the range between Boshaish to Khajahe). Hydrogeomorphology, 6(20), 21-40. [In Persian]
  24. Rezaei Moghaddam, M.H., Sarvati, M.R., & Asghari Sareskanrood S. (2012). Investigation of geometric alterations of Gezel Ozan River considering Geomorphologic and Geologic parameters. Geography and Environmental Planning,23(2), 1-14. [In Persian]
  25. Rozo, G., Nogueira, A.C., & Castro, S. (2014). Remote sensingbased analysis of the planform changes in the Upper Amazon River over the period 1716- 2226. Journal of South American Earth Sciences, 41, 21-44.
  26. Shahi Nejad, B. & Dehghani, R. (2017). Evaluation and Performance of Support Vector Machine Model in Estimation of Suspended Sediment, Irrigation and Water Engineering, 8(1): 30-42. [In Persian]
  27. Sainath, P.A., Shashikant, I.B., Pragati, P.D., & Ravindra D.G. (2012). River Changee Detecation and Bank Erosion Identification using Topographical and Remote Sensing Data. International. Journal of Applied Information Systems, 2(3): 1-7.
  28. Solhi, S., & Khosravi, G. (2020). Using a New method in the Terrain Landscape Classification of Iran. Quantitative Geomorphological Research9(3), 132-154. [In Persian]
  29. Wang, X., Niu, R., & Wu, K. (2011). Lithology intelligent identification using support vector machine and adaptive cellular automata in multispectral remote sensing image. Optical Engineering, 50, 7.
  30. Yamani, M., Rahimi, M., & Vesey, A. (2014). Morphometry and comparison of latitudinal changes of Aras River during the last three decades, case study: downstream of Mil Moghan Dam. Quantitative Geomorphology Research, 3(4), 74-89. [In Persian]
  31. Yamani, M., & Sharfi, C. (2013). Geometrical parameters and their role in time-spatial changes of river beds, a case example: Harud River, a tributary of Karkhe River in Kurdistan Province. Journal of Geography and Development. 26. [In Persian]
  32. Zarei, M., Zandi, R., Naemitabar, M., 2022. Assessment of Flood Occurrence Potential using Data Mining Models of Support Vector Machine, Chaid and Random Forest (Case study: Frizi watershed). Journal of Watershed Management Research, 13(25), 133-144. [In Persian]