تحلیل توزیع مکانی و برهم‌کنش تپه‌های ماسه‌ای مطالعۀ موردی (منطقۀ کلاته مزینان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان، دانشکده آبخیزداری

2 گروه مدیریت مناطق بیابانی، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 گروه مدیریت مناطق خشک و بیابانی دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد

4 بخش مهندسی منابع طبیعی و محیط‌زیست، دانشکده کشاورزی، دانشگاه شیراز

5 بخش تحقیقات بیابان، موسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات آموزش و ترویج کشاورزی

6 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

‎10.22052/deej.2024.254137.1046

چکیده

ﺗﺤﻠﻴﻞ ﭘﺮاﻛﻨﺶ ﻣﻜﺎﻧﻲ عوارض ماسه‌ای و روابط متقابل بین آن‌ها در ﻣﻨﺎﻃﻖ بیابانی اطلاﻋﺎت ارزﺷﻤﻨﺪی در ﻣﻮرد برهم‌کنش آنﻫﺎ و ﭼﮕﻮﻧﮕﻲ ﺗﺄﺛﻴﺮﺷﺎن ﺑﺮ ﻳﻜﺪﻳﮕﺮ ارائﻪ ﻣﻲ‌ﻛﻨﺪ. آگاهی از چگونگی وقوع این روابط می‌تواند برای مدیریت عرصه‌های بیابانی کشور مورد استفاده قرار گیرد. هدف از این تحقیق، بررسی الگوی مکانی و روابط متقابل بین دو نوع تپۀ ماسه‌ای غالب با استفاده از توابع آماری تک‌متغیره و دومتغیره در ماسه‌زارهای منطقۀ کلاته مزینان شهرستان داورزن به‌منظور شناخت الگوی پراکنش و بررسی روابط متقابل بین بارخان‌ها و نبکاهاست. برای انجام این تحقیق ابتدا با استفاده از تصاویر اخذشده توسط پرندۀ هدایت‌پذیر از راه دور (پهپاد)، موقعیت دقیق هر نبکا (1013 پایۀ گیاهی) و بارخان (90 عدد) ثبت شد. سپس با استفاده از آماره‌های اختصاری ازجمله توابع تک و دومتغیره g(r) و O-Ring، الگوی پراکنش مکانی و رابطۀ متقابل بین دو عارضۀ بارخان و نبکا مورد بررسی قرار گرفت. نتایج تابع‌های به‌دست‌آمده نشان داد که الگوی پراکنش نبکاها تا فواصل حدود 270 متری به‌صورت خوشه‌ای و پراکنش بارخان‌ها در سطح معنی‌داری 95 درصد دارای الگوی پراکنش مشخصی نبود. رابطۀ متقابل بین بارخان‌ها و نبکاها نیز تا فاصلۀ 500 متری به‌صورت منفی بود. نبکا به‌دلیل منابع ماسه کم در نزدیکی منشأ شکل می‌گیرد، سپس با افزایش ماسه، بارخان‌ها شکل می‌گیرند. بررسی الگوی مکانی و تعیین روابط بین انواع عارضه‌های ماسه‌ای با استفاده از توابع آماری می‌تواند به شناخت علل تشکیل مکانی عوارض ماسه‌ای کمک نماید که این امر به تدوین برنامه‌های احیایی و مدیریت اکولوژیک ماسه‌زارها در بیابان‌ها کمک نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Spatial Distribution and Interaction of Sand Dunes: A Case Study of Kalateh Mazinan Region

نویسندگان [English]

  • Mohammadjavad Yousefi 1
  • Mohsen Hosseinalizadeh 2
  • Alireza Rashki 3
  • Narges Kariminejad 4
  • Hamidreza Abbasi 5
  • Ali Mohammadian Behbahani 6
1 Gorgan University of Agricultural Sciences and Natural Resources,Watershed Faculty
2 Dept. of Arid Zone  Management Faculty of Rangeland & Watershed Management Gorgan University of Agricultural Sciences & Natural Resources. Gorgan, IRAN
3 Department of Management of Dry and Desert Areas, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad
4 Department of Natural Resources and Environmental Engineering, Faculty of Agriculture, Shiraz University
5 Desert Research Department, Forestry and Pasture Research Institute, Agricultural Education and Extension Research Organization
6 Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Introduction: Recognized as the hosts of a wide variety of formative processes, deserts represent vital ecosystems within Iran's natural landscape. On the other hand, wind erosion exerts particularly significant influence on such arid regions, playing a key role in shaping the environment while posing serious environmental risks. Moreover, wind-driven movement of active and semi-active sand dunes decreases the comfort levels for local inhabitants, putting agricultural lands, settlements, and transportation routes at risks. Consequently, studying the dynamic behavior and variability of wind-driven sediments, especially in arid and desert regions, is of great importance. While UAVs (Unmanned Aerial Vehicles) may not fully replace traditional methods of spatial data collection, their unique capabilities allow them to be integral to the map-making process, offering more economical alternatives. Analyzing statistical summaries within the study timeframe facilitates an understanding of the spatial and temporal patterns of the sand dunes. As with many natural phenomena, wind erosion and sand dune dynamics can be complex and elusive; therefore, the investigation of their various impacts requires the application of contemporary methods such as statistical analysis. In this regard, this study mainly sought to develop a conceptual framework that outlines the patterns of sand features in the study area and elaborates on their interrelationships.
 
Materials and methods: This study was conducted in an area covering approximately 200 hectares of sand dunes in the southern region of Mezinan Kalate, located in western Sabzevar city. The area features various sand formations, including Nebkha and Barkhan. To analyze the spatial patterns of the complications observed, the exact locations of such complications were identified, followed by an assessment of their distribution patterns. The paired univariate function (g(r)) was then employed to investigate the distribution patterns of different complications and their impacts on similar types. Additionally, the bivariate pairwise correlation function (g12(r)) was utilized to explore the interactions among various complications in the study area. Initially, a general assessment of the region was conducted through a field visit, followed by aerial photography using a drone to collect the required data regarding the complications from the study area. After analyzing the images, an orthophoto was generated. Then, a point map was created for spatial locations via ArcGIS 10.2, detailing the distribution of sand dunes and vegetation within the study area. Furthermore, the Kolmogorov-Smirnov test was applied to evaluate the normality of the statistical data. Finally, data processing and spatial analysis were carried out using the Programita software, which involved univariate and bivariate correlation functions, along with O-ring functions. The software employed a Monte Carlo simulation with 199 repetitions, achieving a 95% confidence level and a 5% significance level for the random distribution of the two species investigated.
 
Results: The diagram illustrating the distribution pattern of sand dunes employs the O-ring function, utilizing the g(r) function values to analyze the spatial arrangement of the dunes. Findings from the application of this univariate function indicated that Barkhans did not display a significant spatial pattern. The finding is supported by the O(r) function, reaffirming that the spatial arrangement of Barkhans lacks any significance. The results of the g(r) function in examining the spatial pattern of Nebkhas via univariate functions revealed that within distances ranging from zero to 270 meters, the spatial pattern of the species was characterized by cumulative or clustered shape, and that no significant pattern was detected beyond 270 meters. Similarly, the results of O(r) function suggested that the spatial arrangement of Nebkhas formed clusters within the 0 to 270 meters range, with no significant pattern being observed beyond 250 meters. Additionally, the results obtained from the bivariate function g12(r) showed a negative correlation between these two elements up to about 500 meters, demonstrating their opposing influences on each other's formation and distribution. This finding is consistent with the distribution map of the two elements. The bivariate function O12(r) was also used to validate the results found in g12(r), yielding consistent outcomes with those derived from the pairwise correlation analysis.
 
Discussion and Conclusion: The findings obtained from the spatial analysis of sand dunes and Nebkha indicated that the distribution of sand dunes in this area was intricate, while the arrangement of Nebkhas remained inconsistent. Together, these factors adversely impacted the formation and development of both phenomena. This situation may arise from the phenomena’s similar requirements for the establishment, specifically the availability of sand. It may also be driven by the presence of certain favorable environmental conditions.

کلیدواژه‌ها [English]

  • Univariate Functions
  • Bivariate Functions
  • Spatial Pattern
  • Sand Dune Interaction
  • Spatial Functions
  • Nebkha
  1. Abbasi, H. R., Opp, C., Groll, M., Rohipour, H., & Gohardoust, A. (2019). Assessment of the distribution and activity of dunes in Iran based on mobility indices and ground data. Aeolian Research41, 100539.‏
  2. AhmadAbadi, , Karam, A., Safari, A., & Yazdan Panah, M. (2020). Estimate of Flatness movement and Elevation movement of aeolians in Ardestan erg by Radar Interferometry and Spectral Indicators. Quantitative Geomorphology Research, 8(4), 1-17.
  3. Alinejad, , HosseinAlizadeh, M., Ownegh, M., & Mohammadian Behbahani, A. (2018). Investigating the spatial distribution pattern of Nebka (case study: Sufikm plain, Golestan province). Natural Geography Research, 50(4), 697-712.
  4. Al-Mutiry, M., Hermas, E. A., Al-Ghamdi, K. A., & Al-Awaji, H. (2016). Estimation of dune migration rates north Riyadh City, KSA, using SPOT 4 panchromatic images. Journal of African Earth Sciences124, 258-269.
  5. Baas, A. C. (2007). Complex systems in aeolian geomorphology. Geomorphology, 91(3-4), 311-331.
  6. Bakhshi Khaniki, Gh., & Mohammadi, B. (2012). Ecological study of some species of Salsula genus (Cenopodiaceae) in Golestan province. New Journal of Cell-Molecular Biotechnology, 2(6), 45-52.
  7. Bazzichetto, M., Malavasi, M., Acosta, A. T. R., & Carranza, M. L. (2016). How does dunmorphology shape coastal EC habitats occurrence? A remote sensing approac using airborne LiDAR on the Mediterranean coast. Ecological Indicators, 71, 618-626.
  8. Darmani, M., Ara, H., Rashki, A.R., & Mafi, A. (2020). The origin of dust particles by examining their chemical and collection characteristics in Sarkhes city. Geography and environmental hazards, 9, 21-37.
  9. Delgado Blasco, J. M., Chini, M., Verstraeten, G., & Hanssen, R. F. (2020). Sand dune dynamics exploiting a fully automatic method using satellite SAR data. Remote Sensing12(23), 3993.
  10. Ebrahimi Maimand, S., Zand-mghadam, H., Khanehbad, M., Mahboubi, A., & Hosseinyar, GH. (2020). Analysis of sedimentary texture and effects of vegetation in the Nebkha dunes of Shahdad, eastern Kerman: Application in the formation mechanism. Scientific Quarterly of Earth Sciences, 29(115), 27-38.
  11. Getzin, S., & Wiegand, K. (2007). Asymmetric tree growth at the stand level: random crown patterns and response to slope. Forest Ecology and Management, 242(23), 165-174.
  12. Gholamreza A. & Sadeghian S. (2016). Investigating the role of precision agriculture UAV with remote sensing approach. International Conference on Civil Engineering, Architecture and Urban Landscape. Turkey, Istanbul University.
  13. Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns. John Wiley & Sons.
  14. Hosseinalizadeh, M., Alinejad, M., Kariminejad, N., & Mohammadian Behbahani, A. (2019). Determining the spatial distribution of Halocnemum Strobilaceum species in Nebka Hill using G function in Agh Qala plain of Golestan province. Desert Management, 6(12), 19-32.
  15. Hosseinalizadeh, M., Kariminejad, N., Campetella, G., Jalalifard, A., & Alinejad, M. (2018). Spatial point pattern analysis of piping erosion in loess-derived soils in Golestan Province, Iran. Geoderma328, 20-29.
  16. Pommerening, A., & Stoyan, D. (2008). Reconstructing spatial tree point patterns from nearest neighbour summary statistics measured in small subwindows. Canadian journal of forest research38(5), 1110-1122.
  17. Kargar, M. R. & Sohrabi, H. (2019). Using canopy height model derived from UAV images for tree height estimation in Sisangan forest, 109-116.
  18. Karimi, M., Pourmjidian, M.R., Jalilvand, H., & Safari, A. (2012). Preleminary study for application of O-ring function in determination of small-scale spatial pattern and interaction species (Case study: Bayangan forests, Kermanshah), 608-621.
  19. Kariminejad, N., Hosseinalizadeh, M., & Pourqasmi, H.R. (2020). Spatial monitoring of tunnel erosion using UAV aerial images in windy areas of Golestan province. Watershed Research, 33(3), 53-69.
  20. Mahmoudi, F. (2004). Dynamic Geomorphology. Payam Noor University Press.
  21. Maltez-Mouro, S., Garcia, L. V., Maranon, T., & Freitas, H. (2007). Recruitment patterns in a Mediterranean oak forest: a case study showing the importance of the spatial component. Forest Science53(6), 645-652.
  22. Mousavi, H., Moairi, M., & Wali, A. (2010). Integration of mathematical and statistical modeling of roughness in Barkhan, case study: Rig Chah Jam. Natural Geography Research, 73(1), 83-96.
  23. Nguyen, D., Rieu, I., Mariani, C., & van Dam, N. M. (2016). How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology91, 727-740.
  24. Tavakoli Fard, A., Ghasemieh, H., Nazari Samani, A., & Mashhadhi, N. (2015). Analysis of the activity level of the sand dunes of Rig Kashan using the Lancaster index. Journal of Desert Ecosystem Engineering, 3(5), 37-48.
  25. Refahi, H. (2004). Wind erosion and its control. Tehran University Publications.
  26. Shahraki, A. (2017). Production of digital surface model (DSM) with high resolution and accuracy using UAV photos, Master's thesis in civil engineering. Eqbal Lahori Institute of Higher Education.
  27. Wiegand, T., & Moloney, K. A. (2004). Rings, circles, and null‐models for point pattern analysis in ecology. Oikos104(2), 209-229.
  28. Wiegand, T., He, F., & Hubbell, S. P. (2013). A systematic comparison of summary characteristics for quantifying point patterns in ecology. Ecography36(1), 92-103.