کاهش عدم قطعیت خروجی‌‌ دمای متوسط مدل‌‌های جهانی اقلیم در مناطق خشک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد علوم و مهندسی آبخیزداری، دانشگاه یزد

2 دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد،

3 دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد

‎10.22052/deej.2024.254094.1038

چکیده

تغییر اقلیم و اثرات آن بر بخش‌های مختلف محیط‌زیست و زندگی انسان‌ها، از مهم‌‌ترین چالش‌‌های پیش‌‌ رو در قرن بیست‌ویکم است. یکی از مهم‌‌ترین عوامل عدم قطعیت‌‌ موجود در پژوهش‌‌های اقلیمی به‌‌ویژه پیش‌‌نگری‌‌های اقلیمی، عدم قطعیت‌‌ خروجی‌‌های مدل‌‌های جهانی اقلیم است. سیستم‌‌های آبی در مناطق خشک با کمبود شدید میزان ورودی (بارش) و نرخ بالای میزان خروجی (تبخیر و تعرق) مواجه‌اند. مهم‌‌ترین عامل دخیل در تبخیر و تعرق، دماست. هدف از این تحقیق، کاهش میزان عدم قطعیت خروجی دمای متوسط مدل‌‌های GCM در مناطق خشک به کمک مدل‌‌های اصلاح خطاست. بدین‌‌ سبب، از خروجی‌‌های دمای مدل CanESM2 برای ایستگاه یزد در دوره‌‌های گذشته (۱۹۶۶ـ۲۰۰۵) و آینده (۲۰۰۶ـ۲۰۴۵) براساس سناریوی انتشار RCP 8.5 استفاده شد. برای اصلاح خطای این داده‌‌ها نیز، از روش‌‌های اصلاح خطای LS، NBC و مدل ریزمقیاس‌‌نمایی SDSM استفاده گردید. مدل SDSM در فرایند ریزمقیاس نمایی، موجب اصلاح خطای داده‌‌ها نیز می‌‌شود. در این تحقیق، دورۀ ۲۰۰۶ـ۲۰۲۰ به‌عنوان دورۀ ارزیابی دقت روش‌‌های اصلاح خطا انتخاب شد. برای این منظور، خروجی روش‌‌های اصلاح خطا و داده‌‌های مشاهداتی ایستگاه سینوپتیک یزد در دورۀ ۲۰۰۶ـ۲۰۲۰ باهم مقایسه شدند. نتایج نشان داد داده‌های دمای اصلاح خطا شده توسط هر چهار روش LS، SDSM، NBC و روش ترکیبی LS و SDSM، با داده‌های مشاهداتی ایستگاه سینوپتیک، دارای تطابق قابل قبول هستند و به‌‌ترتیب ضریب تعیین 948/0، 968/0، 969/0 و 969/0 برای این روش‌‌ها به ‌‌دست آمد. نتایج آزمون ناپارامتریک من-کندال نشان داد که دمای متوسط سالانۀ هوا در منطقۀ مورد مطالعه در دورۀ گذشته و آینده، دارای روند افزایشی معنادار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reducing Uncertainty in Average Temperature Projections of Global Climate Models in Dry Regions

نویسندگان [English]

  • Milad Rahimi Ratki 1
  • Mohammad Amin Asadi Zarch 2
  • Mohammad Reza Ekhtesasi 3
  • Mohammadhossein Mobin 3
1 Master of Watershed Science and Engineering, Yazd University, Yazd, Iran
2 , Faculty of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
3 Faculty of Natural Resources and Desert Studies, Yazd University, Yazd, Ira
چکیده [English]

Introduction: The increased use of fossil fuels has resulted in the production of pollutants and the release of greenhouse gases, leading to a global rise in temperature and climate change. On the other hand, climate change significantly influences temperature, precipitation, humidity, and cloud cover in local and regional variations. Therefore, considering the varying trends of climate change across different regions, it is crucially important to investigate the long-term trends of key climate parameters, including temperature and precipitation.
Global Climate Models (GCMs) are reliable tools for simulating the global climate response to greenhouse gas concentrations. Performing based on greenhouse gas emission scenarios, the models can project the data of future climate variables such as precipitation and temperature for the entire Earth in three dimensions. On the other hand, the temperature is expected to rise in different parts of the world by varying degrees, although the exact amount is uncertain. In this regard, climate change not only raises temperature but also affects the hydrological cycle by accelerating ocean surface evaporation.
It is important to acknowledge the uncertainty of GCM outputs in investigations, as its ignorance may reduce the reliability of the results. It should be noted that the raw data obtained from GCMs may not adequately resolve this problem and can diminish the precision of the results. Bias-correction methods have become increasingly common in climate change impact studies over the past decade, ranging from simple averaging methods to complex ones. Therefore, this study sought to investigate the efficiency of LS, NBC, and SDSM bias-correction methods and the combination of SDSM and LS models in reducing the uncertainty of CanESM2 temperature predictions in dry areas.
 
Material and methods: covering an area of approximately 74,650 square kilometers, Yazd province is located in the center of Iran between 29 degrees 48 minutes to 33 degrees 30 minutes north latitude and 52 degrees 45 minutes to 56 degrees 30 minutes east longitude, being characterized by the most unfavorable natural factors that dominate Iran’s central plateau.
This study used three groups of data: 1) daily temperature data collected from Yazd synoptic station from 1966 to 2020, provided by the National Meteorological Organization; 2) Atmospheric statistics obtained from the National Center for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) for the same period; 3) CanESM2 general circulation model of temperature simulations used for the periods of 1966-2005 and 2006-2045, based on the RCP8.5 emission scenario. The study applied three bias-correction methods, including LS, NBC, and SDSM, and performed LS on the outputs of the SDSM model to correct the temperature outputs of the CanESM2 model under the RCP8.5 emission scenario. To assess the efficiency of the methods used, the outputs of each bias-correction method were compared with observational data during the 2006-2020 period.
 
Results: The results revealed a consistent sinusoidal trend in the daily and monthly temperature data. The highest and lowest monthly average temperature rates were found to have been typically recorded in July and January, respectively. Moreover, the average annual temperature indicated an increasing trend from 1966 to 2005, which was found to have continued from 2006 to 2020, but with fewer variations. On the other hand, the results of the CanESM2 temperature simulations based on the RCP8.5 emission scenario suggested that the variations followed a pattern relatively similar to that of the observations. The average annual temperature simulated by the model for both the past (1966-2005) and future (2006-2045) showed a significant increasing trend. However, observational data for the 1966-2005 period indicated a slower increasing trend than the simulated values during the same period. As predicted, compared to the raw model values, the bias-corrected values obtained via the LS method better matched the actual data found for the evaluation period (2006-2020). As for the NBC application, the results suggested that the method improved the accuracy of future average temperature projections of CanESM2. It was also found that SDSM and LS offered relatively acceptable accuracy in terms of SDSM outputs. The results also revealed that the temperature data corrected by all four methods, including LS, SDSM, NBC, and the combination of LS and SDSM agreed well with observational data collected from the synoptic station, whose coefficients of determination were found to be 0.948, 0.968, 0.969, and 0.969, respectively. Moreover, the non-parametric Kendall test revealed a significant increasing trend in the average annual air temperature for both past and future periods in the study area.
 
Discussion and conclusion: the comparison of the coefficients of determination of the average monthly temperature rates corrected by the above-mentioned methods and the ones found for the observational data during the evaluation period indicated that all four bias-correction methods performed acceptably in the study area. It is worth noting that the LS method showed a slightly poorer performance than the other error correction methods. Based on the results of this study, it can be concluded that since the efficiency of methods used for reducing the uncertainty of temperature outputs in dry areas was relatively acceptable, it seems that investigating suitable methods for reducing the uncertainty of precipitation outputs in dry areas would be of greater importance.

کلیدواژه‌ها [English]

  • Arid Regions
  • Bias-Correction
  • Climate Change
  • Mean Temperature
  • NBC
  • Uncertainty
  1. Adhikari, U., & Nejadhashemi, A. P., 2016. Impacts of Climate Change on Water Resources in Malawi. Journal of Hydrologic Engineering, 21(11), 1084-0699.
  2. Alizadeh, A., Sayari, N., Hesami, K. M., Banayan, A. M., & Farid, H. A. (2010). Assessment of climate change potential impacts on agricultural water use and water resources of Kashaf rood basin.
  3. Chen, J., Brissette, F.P., & Leconte, R. (2012). Coupling statistical and dynamical methods for spatial downscaling of precipitation. Climate Chang 114, 509–526.
  4. Chen, J., Brissette, F.P., Chaumont, D., & Braun, M. (2013). Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res, 49, 4187-4205.
  5. Chen, J., Brissette, F.P., & Caya, D. (2020). Remaining error sources in bias-corrected climate model outputs. Climatic Change, 162, 563–582.
  6. Delgado, J. A., Nearing, M. A., & Rice, C. W. (2013). Conservation practices for climate change adaptation. Advances in agronomy, 121, 47-115.
  7. Faghani, M., Ghorbani, Kh., & Salarijazi, M. (2017). Trend and Change Point Analysis of Seasonal SPI Drought Index in Iran. Iranian Journal of Irrigation & Drainage, 11(4), 667-679.
  8. Fang, G. H., Yang, J., Chen, Y. N., & Zammit, C. (2015). Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences, 19(6), 2547-2559.
  9. Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 18, 2069-2094.
  10. Fowler, H.J., Blenkinsop, S., & Tebaldi, C., 2007. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modeling. International Journal of Climatology, 27, 1547-1578.
  11. Gutiérrez, J.M., Maraun, D., & Widmann, M. (2019). An intercomparison of a large ensemble of statistical downscaling methods over Europe: results from the VALUE perfect predictor cross-validation experiment. Int J Climatol, 39, 3750–3785.
  12. Hamidian Pour, M., Fallah Ghalhari, G., & Reza Alimoradi, M. (2021). Evaluating the Efficiency of the SDSM Model in Investigating the Consequences of Climate Change for Different Climate Zones in Iran. Climate Change Research, 2(5), 1-14.
  13. Hannah, L. (2015). The climate system and climate change. Climate change biology (Second Edition). Boston: Academic Press, 13-53.
  14. (2007). General Guidelines on the use of Scenario Data for Climate Impact and Adaptation Assessment, version 2.
  15. (2013). Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007- Synthesis Report of the Forth Assessment Report.
  16. (2022). Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  17. Johnson, F., & Sharma, A. (2012). A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Water Resources Research, 48(1).
  18. Kay, A.L., Davies, H.N., Bell, V.A., & Jones, R.G. (2009). Comparison of uncertainty sources for climate change impacts: flood frequency in England. Climatic change, 92(1-2), 41-63.
  19. Khazaei, M. R., & Khazaei, H. (2018). Scenarios in climate change impact assessment on monthly stream-flow of Karun Basin. Journal of Environmental Science and Technology, 20(1), 29-40.
  20. Koutsoyiannis, D. (2001). Coupling stochastic models of different timescales. Water Resources Research, 37(2), 379-391.
  21. Lenderink, G., Buishand, A., & Van Deursen, W. (2007). Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences, 11(3), 1145-1159.
  22. Maraun, D., Wetterhall, F., & Ireson, A.M. (2010). Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3), RG3003
  23. Maraun, D., Shepherd, T.G., & Widmann, M. (2017). Towards process-informed bias correction of climate change simulations. Nat Clim Chang, 7(11), 764–773
  24. Mínguez, M.I., Ruiz-Ramos, M., Díaz-Ambrona, C.H., Quemada, M., & Sau, F. (2007). First-order impacts on winter and summer crops assessed with various high-resolution climate models in the Iberian Peninsula. Climatic Change, 81, 343-355.
  25. Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A., & Ramirez-Villegas, J. (2020). High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Scientific data, 7(1), 7.
  26. Pervez, M.S., & Henebry, G.M. (2014). Projections of the Ganges–Brahmaputra precipitation—Downscaled from GCM predictors. Journal of Hydrology, 517, 120-134.
  27. Pirnia, A., Habibnejad Roshan, M., & Solaimani, K., (2015). Investigation of precipitation and temperature changes in Caspian sea southern coasts and its comparison with changes in northern hemisphere and global scales. Journal of Watershed Management Research, 6(11), 90-100.
  28. Rajczak, J., Kotlarski, S., & Schär, C. (2016). Does quantile mapping of simulated precipitation correct for biases in transition probabilities and spell lengths? J Clim, 29, 1605–1615.
  29. Rezaei, M., Nahtani, M., Aabkaar, A., Rezaei, M. & Mirkazehi Rigi, M. (2015). Performance Evaluation of Statistical Downscaling Model (SDSM) in Forecasting Temperature Indexes in Two Arid and Hyper Arid Regions (Case Study: Kerman and Bam) . J Watershed Manage Res, 5(10), 117-131.
  30. Romm, J.J. (2022). Climate change: What everyone needs to know. Oxford University Press.
  31. Schwalm, C. R., Glendon, S. & Duffy, P. B. (2020). RCP8.5 tracks cumulative CO2 emissions. Natl Acad. Sci. USA, 117, 202007117.
  32. Schwank, J., Escobar, R., Girón, G.H., & Morán-Tejeda, E. (2014). Modeling of the Mendoza river watershed as a tool to study climate change impacts on water availability. Environmental Science & Policy, 43, 91-97.
  33. Srikanthan, R., & G. G. S. Pegram (2009), A nested multisite daily rainfall stochastic generation model, Hydrol, 371(1), 142–153.
  34. Sunde, M.G., He, H.S., Hubbart J.A., & Urban, M.A. (2017). Integrating downscaled CMIP5 data with a physically based hydrologic model to estimate potential climate change impacts on streamflow processes in a mixed use watershed. Hydrological Processes, 31(9), 1790-1803.
  35. Switanek, M.B., Troch, P., & Castro, C. (2017). Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes. Hydrol Earth Syst Sci, 21, 264–2666
  36. Vaseghi, R., Masah Boani, A., Meshkoati, A., & Rahimzadeh, F. (2011). Investigating the basin runoff under the influence of B1, A2 emission scenarios considering the collective effect of AOGCM models ensemble. The 4th Iran Water Resources Management Conference.
  37. Wang, B., Li Liu, D., Asseng, S., Macadam, I., & Yu, Q. (2015). Impact of climate change on wheat flowering time in eastern Australia. Agricultural and Forest Meteorology, 209, 11-21.
  38. Wang, Q. J., & Nathan, R. J. (2007). A method for coupling daily and monthly time scales in stochastic generation of rainfall series. Journal of Hydrology, 346(3-4), 122-130.
  39. Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145-157.