مدل‌سازی فرسایش بادی با استفاده از گوگل ارث انجین (مطالعۀ موردی: شهرستان سبزوار)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت مناطق بیابانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 عضو هیئت علمی بخش مهندسی منابع طبیعی و محیط زیست، دانشکده کشاورزی، دانشگاه شیراز، شیراز، فارس، ایران

3 گروه مدیریت مناطق بیابانی، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

‎10.22052/deej.2024.254641.1049

چکیده

تدوین استراتژی‌های مناسب برای ارزیابی کمی فرسایش بادی با دقت بالا اهمیت زیادی دارد. در این تحقیق 50 نقطه شواهد زمینی انتخاب شدند؛ سپس 8 شاخص سرعت باد، کاربری اراضی، شوری خاک، رطوبت خاک، بافت سطحی خاک، تراکم پوشش گیاهی، مقدار بارش و مدل رقومی ارتفاعی که با داده‌های میدانی همبستگی داشتند، برای مدل‌سازی انتخاب شدند. چهار روش یادگیری ماشین به‌ترتیب  SVM, GBM, GLM و  RF برای مدل‌سازی خطر فرسایش بادی در منطقۀ مورد مطالعه مورد استفاده قرار گرفت. به‌منظور ارزیابی عملکرد مدل‌ها، از 3 شاخص ضریب کاپا، منحنی تشخیص عملکرد (ROC) و آمار واقعی مهارت مرتبط با آستانه (tss) استفاده شد. درنهایت از میانگین وزنی مدل ترکیبی در بستۀ آماری SDM، برای کاهش عدم قطعیت در مدل‌سازی منطقه استفاده شد. براساس نتایج به‌دست‌‌آمده، مدل‌ SVM با 95/0AUC = ، 97/0TSS =  و 87/0kappa= بهترین عملکرد را داشته است. براساس مدل ترکیبی منطقۀ مورد مطالعه ازنظر شدت فرسایش بادی 44% در کلاس کم، 16% در کلاس متوسط، 15% در کلاس شدید و 25% در کلاس بسیار شدید قرار گرفته است. بنابراین با در نظر گرفتن نتایج مدل ترکیبی (به‌عنوان مدلی با کمترین عدم قطعیت)، می‌توان از پیشروی فرایند تخریب سرزمین و فرسایش بادی کاست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling Wind Erosion Via Google Earth Engine: A Case Study of Sabzevar City

نویسندگان [English]

  • Abdolhossein Boali 1
  • Narges Kariminejad 2
  • Mohsen Hosseinalizdeh 3
1 Department of Arid Zone Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran.
3 Dept. of Arid Zone  Management Faculty of Rangeland & Watershed Management Gorgan University of Agricultural Sciences & Natural Resources. Gorgan, IRAN
چکیده [English]

Introduction: Characterized by fragile ecosystems, dry regions are prone to frequent damage and wind erosion, making it crucial to develop effective strategies for accurately assessing wind erosion. Therefore, this study sought to model and prepare a wind erosion risk map using remote sensing and machine learning approaches in Sabzevar City. Throughout the past decades, this region has continuously suffered from land degradation, water and wind erosion, land use conversion, and groundwater depletion. Thus, this study identified the most important parameters contributing to wind erosion in the study area after reviewing the sources of wind erosion and its evaluation models. Moreover, a distance measurement index was considered for each individual parameter. Also, machine learning methods were used to model and prepare the wind erosion map of Sabzevar city using the remote sensing indicators prepared and auxiliary points obtained by reviewing previous studies. Finally, to reduce the uncertainty of the results, the combined modeling method was used to prepare the wind erosion map.
 
Material and methods: fifty ground data points were collected through performing field visits and reviewing the previous studies conducted in the study area. Accordingly, eight factors, including wind speed, land use, soil salinity, soil moisture, soil texture, vegetation density, precipitation, and digital elevation model (DEM) were selected based on the review of the related literature review. Then, to model wind erosion in the study area, the values found for each of the aforementioned factors were correlated with the field data. Moreover, four machine learning techniques, including SVM, GBM, GLM, and RF were used to predict wind erosion risk in the study area. In addition, the kappa coefficient, ROC curve, and True Skill Statistics (TSS) were used to assess model performance. Finally, a combined model was employed in the SDM statistical package to minimize the uncertainty of regional modeling.
 
Results: The SVM model demonstrated the best performance with AUC = 0.95, TSS = 0.97, and kappa = 0.87. The results indicated that the eastern regions of the study area were affected the most by severe wind erosion. Moreover, the combined model revealed that 44% of the area fell within the low wind erosion class (5340 square kilometers), 16% in the medium class (2007 square kilometers), 15% in the severe class (1916 square kilometers), and 25% in the very severe class (3122 square kilometers). The results of the significance of the variables showed that wind speed, precipitation, vegetation density, and surface moisture (NDMI) were the most important factors that contributed to the region’s wind erosion, respectively. Furthermore, land use change, soil salinity, and soil surface texture were found to have the least contribution to wind erosion in the study area, respectively. These findings can help the relevant decision-makers to set managerial policies and practical plans to avoid the risks of wind erosion.
 
Discussion and Conclusion: effective planning, optimal management, and corrective measures can be made and implemented to prevent land degradation and wind erosion in the affected areas by using the combined model with the least uncertainty. Generally, modeling wind erosion and preparing its map play a fundamental role in environmental studies. In this study, four models were applied in the form of an SDM statistical package, where the accuracy of the evaluation results clearly identified the best model. The difference in the results obtained from the performance of the models confirmed the uncertainty between them. Therefore, it appears that using a combined approach can be a suitable solution to reduce the uncertainty of modeling. The results of the study also suggested that the western areas of Sabzevar City were the most important centers of wind erosion production, where the surface of the hills was loamy and sandy. Thus, to avoid wind erosion in the study area, some corrective and biological measures are suggested, including the cultivation and development of salinity-resistant plant community cover, the cultivation of sand-loving plants, and the construction of windbreaks for sand dunes. While the measures performed so far in combating dust storms and wind erosion in Sabzevar city have proved to be ineffective, the intensified occurrence of dust in the region throughout the recent years and the irreparable consequences it has brought about make it necessary to devise and implement a comprehensive plan to deal with those phenomena. In this regard, the wind erosion risk intensity maps prepared in this study can be an efficient and appropriate tool for managing and reducing the effects of wind erosion and land destruction.

کلیدواژه‌ها [English]

  • Wind Erosion
  • Land Degradation
  • Google Earth Engine
  • Spatial Modeling
  1. Abuzaid, A. S., & Abdelatif, A. D. (2022). Assessment of desertification using modified MEDALUS model in the north Nile Delta. Egypt, Geoderma, 405. doi: 10.1016/j.geoderma.2021.115400.
  2. Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), pp. 1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x.
  3. Arabameri, A., Asadi Nalivan, O., Saha, S., Roy, J., Pradhan, B., Tiefenbacher, J.P., & Thi Ngo, P.T. (2020). Novel ensemble approaches of machine learning techniques in modeling the gully erosion susceptibility. Remote Sensing, 12(11), p.1890. doi: 10.3390/rs12111890.
  4. Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22(1), pp. 42–47. doi: 10.1016/j.tree.2006.09.010.
  5. Asfaw, E., Suryabhagavan, K. V., & Argaw, M. (2018). Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17(3), pp. 250–258. doi: 10.1016/j.jssas.2016.05.003.
  6. Bashari, H., Boali, A., & Soltani, S. (2023). Accommodating uncertainty in soil erosion risk assessment: Integration of Bayesian belief networks and MPSIAC model, Natural Hazards Research. Institute of Crustal Dynamics, China Earthquake Administration. doi: 10.1016/j.nhres.2023.09.009.
  7. Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, pp. 24–31. doi: 10.1016/j.isprsjprs.2016.01.011.
  8. Boali, A.H., & Mohammadian Behbahani, A. (2018). Comparative evaluation of wind erosion intensity modeling using WEHI and IRIFR models to present the management plan of Segzai Plain in Isfahan. Soil and Water Conservation, 27(4), 129-147. doi: 10.22069/jwsc.2020.17540.3305.
  9. Boali, A., Bashari, H., & Jafari, R. (2019a). Evaluating the potential of Bayesian networks for desertification assessment in arid areas of Iran. Land Degradation and Development, 30(4), pp. 371–390. doi: 10.1002/ldr.3224.
  10. Boali, A., Bashari, H., & Jafari, R. (2019b). Evaluating the potential of Bayesian networks for desertification assessment in arid areas of Iran. Land Degradation and Development, 30(4), pp. 371–390. doi: 10.1002/ldr.3224.
  11. Bofana, J., Zhang, M., Nabil, M., Wu, B., Tian, F., Liu, W., Zeng, H., Zhang, N., Nangombe, S.S., Cipriano, S.A., & Phiri, E. (2020). Comparison of different cropland classification methods under diversified agroecological conditions in the Zambezi River Basin. Remote Sensing, 12(13), p. 2096. doi: 10.3390/rs12132096.
  12. Congalton, R. G., & Mead, R. A. (1983). A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetric Engineering & Remote Sensing, 49(1), pp. 69–74.
  13. Dehni, A., & Lounis, M. (2012). Remote sensing techniques for salt affected soil mapping: Application to the Oran region of Algeria. in Procedia Engineering, pp. 188–198. doi: 10.1016/j.proeng.2012.01.1193.
  14. Devkota, K.C., Regmi, A.D., Pourghasemi, H.R., Yoshida, K., Pradhan, B., Ryu, I.C., Dhital, M.R., & Althuwaynee, O.F. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural hazards, 65, pp. 135-165. doi: 10.1007/s11069-012-0347-6.
  15. Dragomir, V. D. (2010). Environmentally sensitive disclosures and financial performance in a European setting. Journal of Accounting & Organizational Change, 6(3), pp. 359–388. doi: 10.1108/18325911011075222.
  16. Ebrahimi, E., Araújo, M.B., & Naimi, B. (2023). Flood susceptibility mapping to improve models of species distributions. Ecological Indicators, 157, p. 111250. doi: 10.1016/j.ecolind.2023.111250.
  17. Eftekhari, R., Shahriari, A., & Ekhtizi, M. (2014). Evaluation and preparation of a map of the actual and potential state of desertification with an emphasis on wind erosion criteria in the southwest of Hirmand city using the MICD model. Geography and Development, 38(13), doi: 139-150. 10.22111/gdij.2015.1936.
  18. Elnashar, A., Zeng, H., Wu, B., Gebremicael, T.G., & Marie, K. (2022). Assessment of environmentally sensitive areas to desertification in the Blue Nile Basin driven by the MEDALUS-GEE framework. Science of the Total Environment, 815, p. 152925. doi: 10.1016/j.scitotenv.2022.152925.
  19. Emadodin, I., & Bork, H. R. (2012). Degradation of soils as a result of long-term human-induced transformation of the environment in Iran: An overview. Journal of Land Use Science, 7(2), pp. 203–219. doi: 10.1080/1747423X.2011.560292.
  20. Guo, B., Zang, W., Han, B., Yang, F., Luo, W., He, T., Fan, Y., Yang, X., & Chen, S. (2020). Dynamic monitoring of desertification in Naiman Banner based on feature space models with typical surface parameters derived from LANDSAT images. Land Degradation & Development, 31(12), pp. 1573-1592. doi: 10.1002/ldr.3533.
  21. Gurmessa, B., Demissie, A., & Lemma, B. (2015). Susceptibility of soil to wind erosion in arid area of the Central Rift Valley of Ethiopia, Environmental Systems Research. Environmental Systems Research, 4(1). doi: 10.1186/s40068-015-0033-2.
  22. Hong, S.W., Lee, I.B., Seo, I.H., Kwon, K.S., Kim, T.W., Son, Y.H., & Kim, M. (2014). Measurement and prediction of soil erosion in dry field using portable wind erosion tunnel. Biosystems engineering, 118, pp.68-82. doi: 10.1016/j.biosystemseng.2013.11.003.
  23. Ilderami, A., Moradi, M., & Ghorbani, M. (2016). The effect of the severity of wind erosion and desertification on habitat destruction in Hamadan region. Geography and Environmental Planning, 69(29), 21-42. doi: 10.22108/gep.2017.101162.1009.
  24. Kok, J.F., Adebiyi, A.A., Albani, S., Balkanski, Y., Checa-Garcia, R., Chin, M., Colarco, P.R., Hamilton, D.S., Huang, Y., Ito, A., Klose, M., Li, L., Mahowald, N.M., Miller, R.L., Obiso, V., Pérez García-Pando, C., Rocha-Lima, A., & Wan, J.S. (2021). Contribution of the world's main dust source regions to the global cycle of desert dust. Chem. Phys., 21(10), 8169-8193, doi:10.5194/acp-21-8169-2021.
  25. Lamchin, M. et al. (2016). Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia, Advances in Space Research, 57(1), pp. 64–77. doi: 10.1016/j.asr.2015.10.006.
  26. Lee, E.J., Piao, D., Song, C., Kim, J., Lim, C.H., Kim, E., Moon, J., Kafatos, M., Lamchin, M., Jeon, S.W., & Lee, W.K. (2019). Assessing environmentally sensitive land to desertification using MEDALUS method in Mongolia. Forest Science and Technology, 15(4), pp. 210-220. doi: 10.1080/21580103.2019.1667880.
  27. Li, J., Ma, X., & Zhang, C. (2020). Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century. Science of the Total Environment, 709, p. 136060. doi: 10.1016/j.scitotenv.2019.136060.
  28. Meng, X., Gao, X., Li, S., Li, S., & Lei, J. (2021). Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecological indicators, 129, p. 107908. doi: 10.1016/j.ecolind.2021.107908.
  29. Naimi, B. et al. (2022). Potential for invasion of traded birds under climate and land-cover change. Global Change Biology, 28(19), pp. 5654–5666. doi: 10.1111/gcb.16310.
  30. Naimi, B., & Araújo, M.B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39(4), pp. 368-375. doi: 10.1111/ecog.01881.
  31. Nauman, T.W., Munson, S.M., Dhital, S., Webb, N.P., & Duniway, M.C. (2023). Synergistic soil, land use, and climate influences on wind erosion on the Colorado Plateau: Implications for management. Science of the Total Environment, 893, p. 164605. doi: 10.1016/j.scitotenv.2023.164605.
  32. Paredes, M., Bertoldo, S., Carosso, L., Lucianaz, C., Marchetta, E., Allegretti, M., & Savi, P. (2019). Propagation measurements for a LoRa network in an urban environment. Journal of Electromagnetic Waves and Applications, 33(15), pp. 2022-2036. doi: 10.1080/09205071.2019.1661287.
  33. Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region. Iran, Catena, 137, pp. 360–372. doi: 10.1016/j.catena.2015.10.010.
  34. Silakhouri, I., Vahabzadeh, G., & Parisai. Z. (2016). Assessing the risk of water and wind erosion and comparing their sedimentation potential in Harithabad Sabzevar area. Geography and urban planning. No. 22. Spring 2016. pp. 85-98. doi: 10.22111/gaij.2017.3018.
  35. Silakhouri, I., & Ownegh. M. (2017). Identification and classification of geomorphological facies of Sabzevar region using remote sensing and geographic information system. Remote sensing and geographic information system in natural resources, 9(1), Spring 2017.
  36. Santra, P., Kumar, M. and Panwar, N., 2017. Digital soil mapping of sand content in arid western India through geostatistical approaches, Geoderma Regional. Elsevier B.V., 9, pp. 56–72. doi: 10.1016/j.geodrs.2017.03.003.
  37. Wijitkosum, S. (2016). The impact of land use and spatial changes on desertification risk in degraded areas in Thailand Sustainable Environment Research The impact of land use and spatial changes on deserti fi cation risk in degraded areas in Thailand. Sustainable Environment Research. Elsevier Ltd, 26(2), pp. 84–92. doi: 10.1016/j.serj.2015.11.004.
  38. Xayasouk, T., Lee, H. M., & Lee, G. (2020). Air pollution prediction using long short-term memory (LSTM) and deep autoencoder (DAE) models. Sustainability (Switzerland), 12(6). doi: 10.3390/su12062570.
  39. Xiao, J. et al. (2006). Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. International Journal of Remote Sensing, 27(12), pp. 2411–2422. doi: 10.1080/01431160600554363.
  40. Yaghmaei, H., Sadeghi, S.H., Moradi, H., & Gholamalifard, M. (2018). Effect of Dam operation on monthly and annual trends of flow discharge in the Qom Rood Watershed, Iran. Journal of Hydrology, 557, pp. 254-264. doi: 10.1016/j.jhydrol.2017.12.039.
  41. Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3–4), pp. 251–266. doi: 10.1016/j.enggeo.2005.02.002.
  42. Zhou, X., Lin, H. S., & White, E. A. (2008). Surface soil hydraulic properties in four soil series under different land uses and their temporal changes, CATENA, 73(2), pp. 180–188. doi: 10.1016/j.catena.2007.09.009.