تحلیل مکانی و زمانی شاخص خشکسالی PDI در منطقۀ شمال ‌غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

2 گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، گروه مرتع و آبخیزداری، دانشگاه ارومیه، ایران

3 گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه ارومیه، ارومیه، ایران

‎10.22052/deej.2024.254336.1044

چکیده

خشکسالی از مهم‌ترین پدیده‌های اقلیمی است که مخاطرات و پیامدهای زیادی برای انسان و محیط‌زیست دارد. در این پژوهش، از داده‌های دما و بارندگی 20 ایستگاه سینوپتیک شمال‌ غرب ایران در دورۀ آماری 35 ساله (2021-1987) به‌منظور استخراج و تحلیل روند شاخص خشکسالی PDI و مقایسۀ آن با شاخص‌های SPI و SPEI استفاده شد. نتایج نشان داد براساس شاخص PDI، حدود 85% ایستگاه‌ها، روند صعودی و 15% ایستگاه‌ها، روند نزولی دارند. ازلحاظ تغییرات مکانی ایستگاه مراغه، تبریز، سراب، سقز، خوی، ماکو و خلخال دارای بیشترین خشکسالی، و ایستگاه‌های خرمدره، سنندج، زنجان، تکاب، بیجار و جلفا دارای کمترین خشکسالی سالانه بوده است. علاوه‌بر‌ این، بیشترین دورۀ ترسالی در ایستگاه بیجار و طولانی‌ترین دورۀ خشکسالی در ایستگاه اردبیل مشاهده شد. در بازۀ زمانی 1991 تا 1994 تقریباً تمام ایستگاه‎های مورد مطالعه، شرایط ترسالی داشتند. پس از 1998 تقریباً تعداد ایستگاه‌های با شرایط خشکسالی، افزایش داشت و در بازۀ زمانی 2012 تا 2017 بیشتر ایستگاه‌ها، خشکسالی را تجربه کردند. نتایج نشان داد همبستگی بالایی بین شاخص PDI و شاخص‌های متداول خشکسالی SPI و SPEI وجود دارد. از شاخص PDI به‌دلیل محاسبۀ آسان و مستقل بودن آن از پارامترهای آماری، در تحلیل خشکسالی استفاده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial and Temporal Analysis of PDI Drought Index in the Northwest Zone of Iran

نویسندگان [English]

  • Ayub Mirzaei Hassanlu 1
  • Mahdi Erfanian 2
  • Khadijeh Javan 3
1 Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, Iran.
2 Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, Iran
3 Department of Geography, Faculty of Literature and Humanities, Urmia University, Urmia, Iran
چکیده [English]

Introduction: Drought stands as an inevitable natural disaster with no means of prevention. Its detrimental impacts extend across diverse sectors, including water resources, agriculture, and the environment. Drought is typically defined as a substantial scarcity of natural freshwater resources persisting over an extended period due to shifts in precipitation and temperature patterns. Consequently, periods marked by below-average rainfall often result in temporary drought, particularly in arid and semi-arid regions characterized by relatively high temperatures. Globally, drought events are classified into four categories: meteorological, soil moisture (agricultural), hydrological, and socio-economic. Studying drought becomes imperative for implementing optimal solutions and strategies to manage water resources and ensure food security, among other concerns.
 
Materials and Methods: This research utilizes the Pedj Drought Index (PDI), a unique and potent tool, to delve into drought analysis. The PDI, grounded in precipitation and temperature data, offers a more accurate and accessible understanding of drought's spatial and temporal characteristics. Based on yearly averages at stations, this innovative approach provides a fresh perspective on drought analysis. We gathered and scrutinized annual rainfall and temperature data from 20 synoptic stations in Northwestern Iran from 1987 to 2021 to conduct this study. The PDI's accuracy and accessibility make it a reliable choice for drought analysis, providing a comprehensive view of the situation.
 
Results: From 1991 to 1995, most of the studied stations experienced wet conditions, while from 2013 to 2017, they faced a severe drought. The most extended wet period occurred in the south at the Bijar station (9 years), and the most prolonged drought period happened in the east at the Ardabil station (8 years). The maximum wet period based on the PDI index (9 years) was observed at the Bijar station, and the most prolonged drought period was at the Ardabil station (8 years). In the northwest of the country, the average duration of the most extended wet periods is 5.5 years, and the average duration of the most prolonged drought periods is 7.5 years. Additionally, the central station experienced two 5-year drought periods, and the Tabriz station underwent two 4-year wet periods. Based on the precipitation anomaly index, 60% of the stations (12 stations) showed a decreasing trend in precipitation anomalies, with the Sanandaj and Maragheh stations having a significant 95% decrease. In comparison, only 40% (8 stations) exhibited an insignificant upward trend in precipitation. The temperature anomaly index showed an upward trend in all studied stations, with only Bijar, Takab, Sarab, and Miandoab stations (highlighted in red) having a significant 95% increase. According to the drought index PDI, none of the stations experienced extremely dry (ExD) or moderately dry (MiD) conditions. The highest percentage of severe drought was observed in Zanjan (71.5%), moderate drought in Khalkhal (20%), and mild drought in Tabriz, Maragheh, and Piranshahr (42.85%). Severe dryness was observed in the Bijar station (42.85%), moderate dryness in Maku (17%), severe dryness in Takab, Khormabad, and Miandoab (71.5%), and highly severe dryness (71.5%) in Ardabil Province. These findings underscore the urgent need for effective drought management and water resource planning in the northwest region of Iran. These findings underscore the urgent need for effective drought management and water resources planning in the northwest area of Iran.
 
Discussion and Conclusion: This study investigated the effects of annual mean precipitation and temperature changes on drought and long-term dry events using the PDI index in 20 stations in the northwest region of Iran, spanning five provinces over 35 years (1987-2021). The northwest Iran stations experienced wet periods from 1990 to 1994, dry periods from 1998 to 2001, and from 2013 to 2017. The most extended wet period was approximately 5.5 years, and the longest prolonged drought period was around 7.5 years. On an annual scale, the PDI could describe the spatiotemporal variations of drought and wetness in the study area to a considerable extent. Despite its simplicity, the PDI provided highly accurate results compared to common drought indices such as SPI and SPEI, which rely on statistical assumptions and distribution-related parameters. The stronger correlation of PDI with SPEI, as opposed to SPI, demonstrates the capability of PDI to explain the effects of precipitation and temperature changes on drought and wetness in the northwest region of Iran.

کلیدواژه‌ها [English]

  • Meteorological Drought
  • Trend Analysis
  • Climate Change
  1. Ahmed, K., Shahid, S., & Nawaz, N. (2018). Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmospheric Research, 214, 364–374.
  2. Azizi, A., & Sadeghi, R. (2021). Drought and Ecological Migration in Northwestern of Iran over the Last Three Decades (1986-2016). Journal of Environmental Studies, 46(4), 601-623.
  3. Chen, H., Guo, S., Xu, C.Y & Singh, V.P. (2007). Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. Journal of Hydrology344(3-4), 171-184.
  4. Dai, A. (2011). Drought under Global Warming: A Review. Wiley Interdisciplinary Reviews. Climate Change,2(1),45-65
  5. Elagib, N.A., & Elhag, M.M. (2011). Major climate indicators of ongoing drought in Sudan. Journal of Hydrology, 409, 612–625.
  6. Eslahi, M., Sobhani, B., & Pourasghar, F. (2015). Studying and applying the Standardized Precipitation Evapotranspiration Index (Case study: Tabriz Meteorological Station). Journal of Climate changem, 5(19), 23-38.
  7. Gupta, V., & Jain, MK. (2018). Investigation of multi-model spatiotemporal mesoscale drought projections over India under climate change scenario. Journal of Hydrology, 567, 489–509.
  8. M., Scholz, P., & Chelcea, S., (2016). Assessment of droughts in Romania using the Standardized Precipitation Index. Natural Hazards, 81(3), 1483–1498.
  9. Javan, Kh., Azizzade, R., Bashiri, H., & Shahriar, F. (2015). Zoning SPI and DI drought indices using rainfall network data in Northwest of Iran. Natural Geography Quarterly, 8(29), 117-130.
  10. Kendall, M.G. (1975). Rank correlation methods. Griffin. London: UK.
  11. Keyantash, J., & Dracup, J.A. (2002). The quantification of drought: An evaluation of drought indices. Bulletin of the American Meteorological Society, 83(8), 1180-1167.
  12. Kundzewicz, Z.W. (2009). Adaptation to floods and droughts in the Baltic Sea basin under climate change. Boreal Environment Research, 14, 193–203.
  13. Lashkari, A., Irannezhad, M., Zare, H., & Labzovskii, L. (2021). Assessing long-term spatio-temporal variability in humidity and drought in Iran using Pedj Drought Index (PDI). Journal of Arid Environments, 185, 104336.
  14. Mann, HB. (1945). Nonparametric test against trend. Econometrica, 13, 245- 259.
  15. Mavromatis, T. (2007). Drought index evaluation for assessing future wheat production in Greece. International Journal of Climatology, 27, 911-924.
  16. McKee, T.B., Doesken, N.J., & Kleist, J. (1993). The relationship of drought frequency and duration t time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Anaheim, CA, USA.
  17. McNeeley, S.M., Beeton, T.A., & Ojima, D.S. (2016). Drought risk and adaptation in the interior United States: Understanding the importance of local context for resource management in times of drought. Weather Climate and Society, 8,147–161.
  18. Mirzaei Hassanlu, A., Abghari, H., & Erfanian, M., 2020. Evaluation of SPEI Drought Index and Trend Analysis Using Nonparametric Methods in the Selected Stations of Urmia lake Basin. Journal of Watershed Management Research11(22), 175-187.
  19. Mirzaei, M., Amininia, k., & Panahi, A., 2022. Statistical-Synoptic Analysis of the Occurrence of Dry Autumns in Northwest of Iran. Geographical Space, 22(78), 165-190.
  20. Mishra, A.K., & Singh, V.P. (2010). A review of drought concepts. Journal of Hydrology, 391, 204–216.
  21. Montaseri, M., Amirataee, B., & Khalili, K. (2016). Identification of Trend in Spatial and Temporal Dry and Wet Periods in Northwest of Iran Based on SPI and RAI Indices. Journal of Water and Soil, 30(2), 655-671.
  22. Naresh Kumar, M., Murthy, C.S., Sesha Sai, M.V.R., & Roy, P.S. (2009). On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorological Applications, 16, 381–389.
  23. Obasi, G.O.P. (1994). WMO’s role in the international decade for natural disaster reduction. Bulletin of the American Meteorological Society, 75(9), 1651-1661.
  24. Otkin, J.A., Svoboda, M., Hunt, E.D., Ford, T.W., Anderson, M.C., Hain, C., & Basara, J.B. (2018). Flash droughts: A review and assessment of the challenges imposed by rapid onset droughts in the United States Bulletin of the American Meteorological Society, 99, 911–919.
  25. Palmer, W. (1965). Meteorological Droughts; Weather Bureau Research Paper 45; U.S. Department of Commerce: Washington, DC, USA,58.
  26. Pedj, D.A. (1975). On the indicator of drought and moisture surplus. In Proceedings of HMC of USSR; Science Press: Beijing, China, 156, 19–38.
  27. Razmi, R., Sotoudeh, F., Ghane, M., & Ostad-Ali-Askari, K. (2022). Temporal–spatial analysis of drought and wet periods: case study of a wet region in Northwestern Iran (East Azerbaijan, West Azerbaijan, Ardebil and Zanjan provinces). Applied Water Science12(11), 251.
  28. Sabziparvar, A.A., & Shadmani, M. (2011). Trends Analysis of Reference Evapotranspiration Rates by Using the Mann Kendall and Spearman Tests in Arid Regions of Iran. Journal of Water and Soil, 25(4), 823-834.
  29. Salahi, B., & Faridpour, M. (2016). Spatial analysis of climatic drought in North West of Iran using spatial autocorrelation statistics. Journal of Spatial Analysis Environment, 3(3), 1-20.
  30. Stagge, J.H., Tallaksen, L.M., Gudmundsson, L., Van Loon, A.F., & Stahl, K. (2016). Response to comment on ‘Candidate Distributions for Climatological Drought Indices (SPI and SPEI)’. International Journal of Climatology, 36, 2132–2138.
  31. Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.
  32. Torabinezhad, N., Zarrin, A., & Dadashi-Roudbari, A.A. (2023). Analysis of different types of droughts and their characteristics in Iran using the Standardized Precipitation Evapotranspiration Index (SPEI). Journal of Water and Soil, 37(3), 473-486.
  33. Toloei, Y., Gandomkar,, & Bagheri Badaghabadi, M. (2021). Investigating the Relationship between Northern Hemisphere Transplant Patterns and Drought in Northwestern Iran. Journal of Physical Geography, 14(51), 55-74.
  34. Van Rooy, M.P. (1965). A Rainfall Anomally Index Independent of Time and Space, NOTOS. 14, 43-48.
  35. Vicente-Serrano, S.M., Begueria, S., & Lopez-Moreno, J.I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696–1718.
  36. Wang, W., Zhu, Y., Xu, R., & Liu, J. (2015). Drought severity change in China during 1961–2012 indicated by SPI and SPEI. Natural Hazards, 75(3), 2437–2451.
  37. Weghorst, K. (1966). The reclamation drought index: Guidelines and practical applications. In Proceedings of the North American Water and Environment Congress & Destructive Water, Anaheim, CA, USA, 22–28 June.
  38. Wehner, M., Easterlingmm., D.R. Lawrimore, J.H. Heim, R.R. Vose, R.S., & Santer, B.D. (2011). Projections of future drought in the continental United States and Mexico. Journal of Hydrometeorology, 12(6), 1359–1377.
  39. Wu, X., Shen, X., & Li, J. (2022). Spatiotemporal Distribution of Drought and Humidity in China Based on the Pedj Drought Index (PDI). Sustainability14(8), 4546.‏
  40. Xu, K., Yang, D.W. Yang, H.B. Li, Z. Qin, Y., & Shen, Y. (2015). Spatio-temporal variation of drought in China during 1961–2012: A climatic Journal of Hydrology, 526, 253–264.
  41. Yu, M., Li, Q., F. Hayes, M.J., Svoboda, M.D., & Heim, R.R. (2014). Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951–2010? International Journal of Climatology, 34, 545–558.
  42. Zhuang, X., Hao, Z., Singh, V. P., Zhang, Y., Feng, S., Xu, Y., & Hao, F., 2022. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Science of The Total Environment, 838,