بررسی نوسانات سالانۀ غالب بر گردوغبار و سرعت باد در حوضۀ آبخیز هیرمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 سازمان تحقیقات، آموزش و ترویج کشاورزی، موسسه تحقیقات جنگلها و مراتع کشور

2 دکتری بیابان زایی بخش تحقیقات بیابان موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

3 دانشگاه سیستان و بلوچستان

‎10.22052/deej.2024.252996.1013

چکیده

اکوسیستم بیابانی شرق کشور با دو پدیدۀ طبیعی و دائمی باد و گردوغبار مواجه است. شبیه‌سازی چرخه‌های حاکم بر این دو پدیده، برای مدیریت هرچه بهتر آن ضروری است. این منطقه به‌دلیل وجود بادهای 120 روزۀ سیستان و شرایط توپوگرافی در بیشتر مواقع با پدیدۀ باد و گردوغبار مواجه است. همنوایی شرایط مورفولوژی زمین و جریانات هوای ناشی از گرادیان فشار و وجود رسوبات ریزدانه منجر به ایجاد طوفان‌های گردوغبار در دورۀ وزش بادهای 120 روزۀ سیستان شده است. ازآنجاکه این بادها در رخداد گردوغبار در منطقۀ مورد مطالعه بسیار تأثیرگذار است، نوسانات سالانۀ حاکم بر سرعت باد و گردوغبار از اهمیت فراوانی برخوردار است. در همین راستا در این مطالعه، به بررسی و تحلیل چرخه‌های سالانۀ حاکم بر گردوغبار و سرعت باد حوضۀ آبخیز هیرمند پرداخته شده است. برای این منظور، داده‌های مربوط به گردوغبار و سرعت باد در هفت ایستگاه سینوپتیکی در محدودۀ حوضۀ آبخیز هیرمند طی دورۀ 2000 تا 2018 (دورۀ هجده‌ساله) از سازمان هواشناسی کشور استخراج شد. بعد از استخراج کدهای گردوغبار و محاسبۀ سرعت باد در مقیاس سالانه، برای استخراج چرخه‌های حاکم بر سرعت باد و گردوغبار از تحلیل همسازها استفاده شد. در این روش، تک‌تک موج‌ها، استخراج و سهم هریک از آن‌ها در واریانس کل تعیین و درنهایت، پس از استخراج واریانس، تک‌تک موج‌ها ازلحاظ معنی‌داری آماری بررسی شد. نتایج حاصل از تحلیل نوسانات گردوغبار و سرعت باد در حوضۀ آبخیز هیرمند نشان می‌دهد که نوسانات غالب بر این دو پارامتر متنوع است. با وجود این، بیشتر چرخه‌های غالب بر گردوغبار و سرعت باد از نوع کوتاه‌مدت دو تا چهارساله است. در بعضی از ایستگاه‌ها چرخه‌های معادل با طول دورۀ آماری مشاهده شده است که این نوع چرخه‌ها بیانگر وجود روند در سری داده‌هاست.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating Dominant Fluctuations of Dust and Wind Speed in Hirmand Watershed

نویسندگان [English]

  • Fatemeh Dargahian 1
  • Zahra Saeedifar 2
  • Mohammadreza Pudineh 3
1
2 : Research institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
3 Assistant Professor of Geography, University of Sistan and Baluchistan
چکیده [English]

Introduction
The southeastern region of Iran is faced with dust phenomenon, which is primarily caused by 120-day Sistan winds and topographic conditions. Moreover, considering the great influence of the winds on the occurrence of dust in the study area, fluctuations of wind speed and dust are of great importance. Therefore, this study sought to investigate and analyze the cycles governing dust and wind speed in Hirmand watershed.
As a climatic event, dust phenomenon may occur in all weather conditions. However, the phenomenon disturbs human activities and damages social infrastructures such as agriculture, transportation, and industries in arid and semi-arid regions.
Dust storms frequently occur in some parts of the world, especially the Middle East. However, the occurrence of successive dust storms has so increased in the region during the last decade that it is also observed in the cold and rainy months. In this regard, studies conducted on dust storms in Iran suggest that in addition to natural factors that create the mass of fine dust, environmental or human factors are also involved in the occurrence of such a phenomenon and its long-term stability and continuity.
 
Materials and methods: The current study set out to examine and analyze the cycles governing dust and wind speed in the Hirmand watershed. To this end, the required data concerning wind speed and dust data were collected from 2000 to 2018 (18-year period) from seven synoptic stations located within the Hirmand watershed, including Zabul, Zahak Hamon, Nusratabad, Zahedan, Dermian, Deh Salam, Nehbandan, and Birjand stations, using the information published by the National Meteorological Organization (Figure 1). After extraction and quality control of the data, the code of phenomena related to dust has been used to extract the dust. After preparing the annual wind speed and dust data, spectral analysis has been used to analyze the cycles.
 
Results: Fluctuations (cycle), probability, and variance of dust were calculated for Hirmand watershed stations. The high variance indicates the importance of the dominant fluctuation of the cycle. In Birjand station, the time series of dust showed two short-term cycles of two and six years, and the probability of the occurred cycles were 0.2 and 0.5, respectively. Therefore, as the variance of the two-year cycle was found to be higher, it could be said that the cycle in the dust time series of Birjand station is very important.
However, only one dominant cycle of two years was observed in Nehbandan station, whose occurrence probability was reported to be 0.5. Moreover, the variance of the two-year cycle in Nehbandan station was 529, indicating the significance of the cycle in the time series of Nehbandan dust.
As for the Zabul and Zahak stations (located in eastern half of Hirmand watershed), the dust was found to have six and two-year fluctuations. On the other hand, an 18-year cycle was observed in the dust time series of Nusrat Abad station. Moreover, the examination of wind speed fluctuations in Hirmand watershed stations revealed that wind speed was also dominated by short-term fluctuations (just like what was found for the dust). However, various cycles of six and eleven years were observed in some stations. For instance, an eleven-year cycle was found to have prevailed in the drainage station. Therefore, it can be argued that the fluctuations governing dust and wind speed are similar, indicating the relationship between these two parameters in the southeast region of Iran.
 
Conclusion: Sistan basin is known as one of the most active sources of dust and windy desert environments in the world. Although dust activity in Sistan reaches its maximum during summer, the region may be hit by rare severe dust storms in winter. Many studies conducted on precipitation have already used spectral analysis method and the extraction of ruling cycles. However, the technique has not been used in the study of dust and wind.
The analysis of dust cycles showed that the major fluctuations governing the dusts of the Hirmand watershed occur in a short-term (two to four years). Moreover, the status of cycles governing wind speed revealed that short-term fluctuations of two to four years prevailed in most stations (the same as what occurred for the dust). Therefore, the fluctuations governing these two parameters in Hirmand watershed vary from two to four years. A similarity is also observed in the dominant cycles of wind speed and dust, indicating the fact that the dominant cycles of this part of Iran are the same under the influence of the macro-scale oceanic atmospheric system.

کلیدواژه‌ها [English]

  • Dust
  • Wind Speed
  • Fluctuations
  • Dominant Cycle
  1. Alijani, B., Bayat, A., Doostkamian, M., & Balyani, Y., 2016. Spectral Analysis of Time Series for Annual Precipitations in Iran. Journal of Geography and Planning, 20(57), 217-236.
  2. Alijani, D., Doostkamian, M., Ashrafi, S., & Shakeri, F., 2015. Review the Changes of Spatial Autocorrelation Patterns Within a Decade of Precipitation Over the Last Half-Century in Iran. Journal of Geography and Territorial Spatial Arrangement, 5(14), 71-88.
  3. Alijani, B., & Raeispoor, K. (2011). Statistical, Synoptical Analysis of Sand Storms in SE IRAN. (Study Case: Region of SISTAN).‏ Arid Regions Geographic Studies, 2(5), 107-130.
  4. Ansari Ghojghar, M., Araghinejad, S. h., 2018. Investigation of the frequency of dust in the west and southwest of the country, the 2nd National Conference on Climatology of Iran, May 9th, Ferdowsi University of Mashhad: 886-892.
  5. Asakereh, H., Doostkamian, M. and Sadrafshary, S., 2015. Anomalies and cycles of perceptible water over Iran in recent decades. Arabian Journal of Geosciences, 8(11), 9569-9576.
  6. Asakereh, H., Doostkamian, M., & Qaemi, H., 2014. Analysis of anomalies and perceptible water cycles in Iran atmosphere. Journal of Physical Geography Research Quarterly, 46(4), 435-444.
  7. Asakereh, H., 2009. Spectral analysis of time series of annual temperature of Tabriz. Journal of Geographical Research, 93, 33-50.
  8. Asakareh, H., & Yousefizadeh, R. (2015). Evaluating the trend and behavior rain the Shahrood city using the model statistically and spectral analysis. Geography (Regional Planning), 5(3), 51-66
  9. Azad, S., Vigneshb T.S., & Narasimha, R., 2009. Periodicities in Indian Monsoon Rainfall over Spectrally Homogeneous Regions. International Journal of Climatology, DOI: 10.1002/joc.2045.
  10. Balyani, Y., Saligheh, M., Asakereh, H., Nasserzadeh, M.H. (2015). Cycle analysis of time series of annual precipitation Helehand Mond watershed. Jgs, 15(37), 245-272
  11. Çapraz, Ö., Deniz, A., & Doğan, N., 2017. Effects of air pollution on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015. Chemosphere, 181, 544-550.
  12. Dayan, U. and Koch, J., 1986. A Synoptic analysis of the meteorological conditions affecting dispersion of pollutants emitted from tall stacks in the coastal plain of Israel: 537-543.
  13. Dadashi Roudbari, A., Fallah Ghalheri, G., Karami, M., & Baaghide, M. (2016). Analysis of Precipitation Variations of Haraz Watershed Using by Statistical Methods and Spectrum Analysis Technique. Hydrogeomorphology, 3(7), 59-86.
  14. Doostkamian, M. and dargahian, F., (2019). The analysis of the continuity and frequency of fluctuations and jumps of the cold waves (Case Study: Northwest of Iran), Geographic Space 19(6): 147-159
  15. Doostkamian, M., & Mirmousavi, S., (2015). The Study and Analysis the Clusters of Heavy Rainfall Threshold in Iran. Geography and Development Iranian Journal, 13(41), 131-146.
  16. Dargahian, F., & Razavizadeh, S. (2021). Spatial distribution of frequency and intensity of dust phenomenon based on horizontal field of view in Khuzestan province. Iranian Journal of Nature, 6(2): [In Persian]
  17. Ebrahimikhusfi, Z., & Dargahian, F. (2022). Investigation of the Climatic parameters Effect on the Concentration Change of Particles Matter less than 10 μm and its Relation to Wind Erosion Occurrence in Arid Regions. Journal of Arid Regions Geographic Studies9(34), 76-92.
  18. Faridi, S., Naddafi, K., Kashani, H., Nabizadeh, R., Alimohammadi, M., Momeniha, F., et al. (2017) Bioaerosol exposure and circulating biomarkers in a panel of elderly subjects and healthy young adults. Science of the Total Environment, 593: 380-389.
  19. Dumka, U.C., Kaskaoutis, D.G., Francis, D., Chaboureau, J.P., Rashki, A., Tiwari, S., & Mihalopoulos, N. (2019). The role of the Intertropical discontinuity region and the heat low in dust emission and transport over the Thar Desert, India: A Premonsoon case study. Journal of Geophysical Research: Atmospheres124(23), 13197-13219.‏
  20. Faridi S, Naddafi K, Kashani H, Nabizadeh R, Alimohammadi M, Momeniha F, et al. (2017). Bioaerosol exposure and circulating biomarkers in a panel of elderly subjects and healthy young adults. Science of the Total Environment, 593:380-389.
  21. Gabric, A. J., Cropp, R. A., McTainsh, G. H., Johnston, B. M., Butler, H., Tilbrook, B., & Keywood, M. (2010). Australian dust storms in 2002–2003 and their impact on Southern Ocean biogeochemistry. Global Biogeochemical Cycles, 24(2).
  22. Ghaderi, F., Karami, M., Shekari, P., & Jafari, A. (2018). Atmospheric dust deposition trend and its relation with selected climatic and spatial factors in Javanrood Township. Journal of Water and Soil Conservation, 24(6): 123-140.
  23. Hamidian Pour, M., Mofidi, A., Saligheh, M. and Alijani, B., (2016). The role of topography on the simulation of Sistan wind structure in the east of Iranian Plateau. Researches in Geographical Sciences, 16(43): 25-53.
  24. Hartmann, H., Becker, S. and King, L., 2008. Quasi-Periodicities in Chinese Precipitation Time Series. Theor. Appl. Journal of Climatology, 92: 155–163.
  25. Jafari, D., & Doostkamian, M., (2016). The Study & Analysis of Oscillation Changes of Discharge & Precipitation in Mund Basin. Journal of Geography and Territorial Spatial Arrangement, 6(20), 129-140.
  26. Jalili, A. (2020). Do's and don'ts in desert ecosystems and selecting the proper management strategy. Iran Nature5(2), 3-3
  27. Jahanbakhsh, S., & Edalat doust, M., (2008). Climate change in Iran (Case study: North Atlantic Fluctuation Index as an indicator of the effects of solar activity on precipitation changes in Azerbaijan), 3rd Iran Water Resources Management Conference, Tabriz, University of Tabriz, 14 October.
  28. Kalaycı Serdar, M., Cagatay, K., & Kahya, E., (2004). Analysis of El Nino Signals on Turkish Streamflow and Precipitation Patterns Using Spectral Analysis. Fresenius Environmental Bulletin, 13(8).
  29. Karegar, M.E., Bodagh Jamali, J., Ranjbar Saadat Abadi, A., Moeenoddini, M., Goshtasb, H. (2017). Simulation and Numerical Analysis of severe dust storms Iran East . Journal title 3(4): 101-119
  30. Khoddam, N., Irannejad, P., & Ahmadi-Givi, F., (2015). A study of the impact of Indian Monsoon on summer climate of Iran. Iranian Journal of Geophysics, 9(2), 52-66.
  31. Maletsika, P.A., Nanos, G.D., & Stavroulakis, G.G., (2015). Peach leaf responses to soil and cement dust pollution. Journal of Environmental Science and Pollution Research International, 22: 15952–15960.
  32. Mehrabi, S.H., Soltani, S., & Jafari, R., (2015). The study of the relationship between climatic parameters and the occurrence of fine dust (Case study: Khuzestan province). Journal of Agricultural Science and Technology and Natural Resources, Soil and Water Sciences, 19(71): 69- 80.
  33. Miri, A., Piri, H., Shafighi, N., & Bakhtiari Nasab, M. (2019). The effect of Sistan monsoon winds on the microbial contamination of traditional cheese offered in Zabol, 1st National Conference on dust with a Health-Focused Approach, Zabol University of Madical Scienes, 4 february.
  34. Miri, A., Maleki, S., & Middleton, N., (2021). An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century. Science of The Total Environment, 757: 143952.
  35. Mirmousavi, S.H., (2016). Study of the role of wind in creating glacial climatic hazards Case study of Hamadan meteorological station. International Conference on Researches in Science & Engineering, Turkey, Istanbul University, 28 July.
  36. Rahi Zehi, H., Khosravi, M., & Hamidian Pour, M., (2019). International Conference on Dust in Southwest. Zabol: Zabol University, 23 April.
  37. Razavizadeh, S., Abbasi, H., & Dargahian, F. (2021). Investigation of Dust Phenomenon in Golestan Province, with Emphasis on Aerosol Optical Depth Index and Wind Direction and Speed. Jwmseir , 15(53): 58-67
  38. Rodopoulou, S., Chalbot, M.C., Samoli, E., DuBois, D.W., San Filippo, B.D., & Kavouras, I.G. (2014). Air pollution and hospital emergency room and admissions for cardiovascular and respiratory diseases in Doña Ana County, New Mexico. Environmental research, 129: 39-46.
  39. Sabziparvar, A. A., Mir Mousavi, S. H., Karampour, M., Doostkamian, M., Haghighi, E., Rousta, I., & Ghasemi, A. (2019). Harmonic analysis of the spatiotemporal pattern of thunderstorms in Iran (1961–2010).Advances in Meteorology,2019, 1-14.‏
  40. Selwam, A.M., & Joshi, R.R. (1995). Universal spectrum for inter annual variability in codas global air and sea-surface temperature. International Journal Climatology, 15: 613-623.
  41. Shahbazi, T., Saiedi, M., Nosratti, I. and Jalali Honarmand, S.J. (2016). Evaluation the Effect of airborne dust on physiological characteristics and yield of different wheat varieties (Triticum sp.). Journal of Plant Process and Function, 5(15): 195-204.
  42. Sharifi, R., & Abbasi, H.R., & Attapourfard, A. (2021). evaluation of the phenomenon of dust and sand dunes based on effective factors and Lancaster index in Tehran province, the fifth national conference on wind erosion and dust storms, Yazd
  43. Taei Samiromi, S., Moradi, H., Khadagholi, M., & Ahmadi, M., 2013. Study of factors affecting dust phenomenon in west of Iran. Journal of Human & Environment, 11(27), 1-10.
  44. Wilks, D.S., 2006. Statistical methods in the atmospheric sciences. Cornell University.
  45. Zhang, J., Xu., H., Lan, J., Ai, L., Sheng, E., Yan, D., Zhou, K., Yu, K., Song, Y., Zhang, S.H., & Torfsterin, A., 2020. Weakening Dust Storm Intensity in Arid Central Asia Due to Global Warming Over the Past 160 Years. Journal of Front Earth Science. 21 July 2020 https://doi.org/10.3389/feart.2020.0028