بررسی تأثیر وارونگی‌های دمایی بر آلودگی هوای اکوسیستم‌های بیابانی در منطقۀ ویژۀ اقتصادی خلیج فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه برنامه ریزی محیط زیست- پردیس بین المللی کیش- دانشگاه تهران

2 گروه آموزش، برنامه ریزی و مدیریت محیط زیست- دانشکده محیط زیست- دانشگاه تهران

‎10.22052/deej.2024.253734.1027

چکیده

پژوهش حاضر در راستای شناسایی وارونگی‌های دمایی، شدت و ارتباط آن با آلاینده‌های جوّی در منطقۀ صنعتی غرب بندرعباس انجام شد. برای دستیابی به این رهیافت، ابتدا گلباد منطقه ترسیم شد؛ سپس با دریافت داده‌های میانی جو از رادیوسوند بندرعباس و ترسیم نمودار اسکیوتی، روزهای وارونگی دمایی استخراج شد. فراوانی و نوع وارونگی‌ها در مقیاس ماهانه و فصلی بررسی شد. برای مدل‌سازی احتمال وقوع وارونگی، رگرسیون لجستیک بر داده‌ها برازش داده شد. شدت وارونگی نیز در مقیاس ماهانه بررسی شد و معادلۀ خطی آن با رگرسیون چندگانه ترسیم شد. میزان پارامترهای جوّی در روزهای وارونگی و عدم وارونگی با آزمون تی‌استیودنت بررسی شد و درنهایت ارتباط بین غلظت آلاینده‌های جوّی با وارونگی‌ها شناسایی شد. نتایج نشان داد باد غالب در منطقه، جنوب شرقی است که از دریای خلیج‌فارس به‌سمت خشکی می‌وزد. در منطقه، 223 روز از سال وارونگی اتفاق می‌افتد که 157 مورد از آن تابشی و 66 مورد فرونشینی است. وارونگی‌ها در زمستان و بهار بیشتر از تابستان و پاییز است. پایۀ وارونگی در زمستان در 10 متری است؛ اما در تابستان ریزش دینامیکی هوای گرم باعث تشکیل وارونگی فرونشینی می‌شود و ارتفاع پایۀ لایه به بیش از 100 متر می‌رسد. حدود 2/51 درصد وارونگی‌ها شدت ضعیف، 9/37 درصد متوسط، 7/7 درصد شدت زیاد و 3 درصد شدت خیلی ‌زیاد است. وارونگی بیشترین تأثیر را بر ذرات معلق و ازن دارد؛ به‌طوری‌که وارونگی باعث شده است که غلظت ذرات معلق سالانه حدود 52 پی‌پی‌ام نسبت به شرایط عدم وارونگی افزایش یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Inversions on the Air Pollution of Desert Ecosystems in the Special Economic Zone of the Persian Gulf

نویسندگان [English]

  • seyed amir amirizad 1
  • ahmad nohegar 2
1 Department of Environmental Planning - Kish International Campus - University of Tehran
2 Department of Environmental Education, Planning and Management - Faculty of Environment - University of Tehran
چکیده [English]

Introduction: This study tries to investigate the temperature inversion and its role in the concentration of air pollution in the region by using the data observed by Bandar Abbas Radio Sound and the recorded data of meteorological parameters and air pollution in the site of the Persian Gulf Special Economic Zone and to know the characteristics of temperature inversion and its effect on the distribution of industrial pollutants.
 
Materials and methods: The Special Economic Zone of the Persian Gulf Industries is located in the 13 km of Shahid Rajaee Highway, west of Bandar Abbas in Hormozgan Province - the northern shores of the Persian Gulf. In order to analyze anemometer data and state of the direction and speed of winds in the region, Wind rose Plot software was used. In order to investigate the characteristics of temperature inversion in the region and its relationship with the concentration of air pollutants, radiosonde data and the Bandar Abbas Skew-T diagram were used. After downloading the data, using the RAOB software, Skew-T diagram was drawn for Bandar Abbas and the temperature inversion characteristics were obtained from it. In order to model and predict the possibility of temperature inversion, logistic regression model fitting was used. Temperature inversions according to intensity in four separate groups including: weak (0.000-0.010), medium (0.011-0.20), severe (0.021-0.030) and very severe (high 0.031) was divided. In order to equate the intensity of inversion and the effect of climatic variables and characteristics of the temperature, altitude and pressure layer on its intensity, multiple linear regression was used in a step-by-step method. The concentration of standard air pollutants, including PM10, CO, O3, NO2 and SO2 were obtained from the pollution control center at the site of the Persian Gulf Special Economic Zone on a daily basis. After examining the pollutants, their concentration was compared on days of inversion and non-inversion, and their relationship with atmospheric characteristics and characteristics of inversions was investigated.
 
Result: The winds speed classes of the region were prepared on a seasonal scale. The results show that the south and southeast winds are the dominant winds in the region, which is known as the sea breeze. The results of extracting days with temperature inversion in the industrial area showed that the most inversions are in June and May; Also, Feb and Apr are on the same floor in the third row. In July, August and September, the number of inversions decreases and peaks again in autumn. The results of comparing the mean of Student's t-test showed that among meteorological parameters, temperature and wind speed in inversion days and unstable days (no inversion) have significant differences, but relative humidity, air pressure and wind direction, although in two types There are few changes in the inversion conditions, but their differences are not significant. The logistic regression results show that the dependent variable of temperature inversion can be explained with 67% confidence using independent variables. Therefore, the final model is drawn with the variables of ground pressure, wind speed and sensible heat flow according to the equation. Weak inversions are the most frequent. About 51.2% of inversions have weak intensity, 37.9% have medium intensity, about 7.7% have high intensity and only about 3% have very high intensity. According to the monthly scale, the highest percentage of the frequency of weak weather was in July (73%) and the lowest in March (30%). But extreme inversions are the most frequent in January (11%) and in the warm half of the year there are no extreme inversions. The annual average intensity of inversion in the region is average (0.017), but in the hot half of the year (spring and summer), the intensity of inversions is weak and in the cold half of the year (autumn and winter), and the average of the strongest inversions is in March. It happened. The standardized concentration difference of PM10, CO, O3, SO2 and NO2 pollutants was investigated under stable (inversion) and unstable (non-inversion) atmospheric conditions, and the results of the Student's t-test showed that the average concentration difference of PM10, CO, O3 in inversion conditions and The lack of inversion was significant at the 0.01 level; However, no difference was observed in the concentration of SO2 and NO2. The concentration of all pollutants was also higher during inversion than in non-inversion conditions. Therefore, inversion plays an important role in the concentration of atmospheric pollutants in the region. Inversion increased the concentration of PM10 by 56 μg/m3 compared to non-inversion conditions. CO concentration also increased by 0.46 ppm under the influence of inversion. Air inversion and stability have the greatest effect on ozone (O3), which increased by 61.5 ppb. Also, sulfur dioxide increased by 0.11 ppb and nitrogen dioxide by 2.6 ppb on inversion days compared to non-inversion days.
 
Discussion and Conclusion: The results of the investigation of the wind situation in the industrial area west of Bandar Abbas show that the dominant wind is south and south-east, and then the south-southwest directions are the first-order winds. Velocity greater than 12 meters per second exists only in the south direction and with negligible frequency. In most directions, the wind speed is less than 6 meters per second, which was consistent with the results of Kamijani et al. (2014); So that they came to the conclusion that the frequency of high-speed wind decreases from the west to the east of the Persian Gulf, and in Bandar Abbas and the east of the Persian Gulf, the frequency and strength of southerly winds increases compared to the west coast of the Persian Gulf, which is the main reason for the formation of low pressure. In the summer season, this low pressure moves to the eastern coast of the Persian Gulf in the Oman Sea, which increases the frequency of southerly winds, especially on the coasts of Bandar Abbas and Qeshm. In winter, due to the decrease in wind speed, the depth of the layer and the intensity of the inversion increased, and on the contrary, in the summer, the intensity of the inversion decreased with the increase of the wind speed. In the northern cities of Iran, including Tehran, Mashhad and Tabriz, the inversion is more in winter and is of the radiation type, which is the main reason for the stability of the air and the formation of the inversion; However, in the studies related to Tehran, Mashhad and Tabriz (Shamsipour et al., 2013; Sadeghi et al., 2014; Yaori and Saseh, 2011), the role of wind speed and relative humidity has not been mentioned much; However, the results of the current research show that wind speed and relative humidity on the ground have a significant correlation with the intensity of the inversion.

کلیدواژه‌ها [English]

  • Inversion
  • Logistic Regression
  • Air Pollution
  • PM10
  • Bandar Abbas
  1. Al-Hemoud, A., Al-Sudairawi, M., Al-Rashidi, M., Behbehani, W., & Al-Khayat, A. (2019). Temperature inversion and mixing height: Critical indicators for air pollution in hot arid climate. Natural Hazards, 97, 139-155. ‏
  2. Azimi, F. (2008). Evaluation temperature inversion on the Ahvaz air pollution process. Territory, 5(19), 105-112.
  3. Christian, R. A., Lad, R. K., Deshpande, A. W., & Desai, N. G. (2008). Fuzzy MCDM approach for addressing composite index of water and air pollution potential of industries. International Journal of Digital Content Technology and its Application, 2(2). ‏
  4. Di Bernardino, A., Iannarelli, A. M., Casadio, S., Perrino, C., Barnaba, F., Tofful, L., ... & Cacciani, M. (2021). Impact of synoptic meteorological conditions on air quality in three different case studies in Rome, Italy. Atmospheric Pollution Research, 12(4), 76-88. ‏
  5. Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect? Journal of Experimental Psychology: Human perception and performance, 21(3), 628. ‏
  6. Fortelli, A., Scafetta, N., & Mazzarella, A., (2016), Influence of synoptic and local atmospheric patterns on PM10 air pollution levels: A model application to Naples (Italy), Atmospheric Environment, S1352-2310(16)30643-4.
  7. Greenwell, L. L., Moreno, T., Jones, T. P., & Richards, R. J. (2002). Particle-induced oxidative damage is ameliorated by pulmonary antioxidants. Free Radical Biology and Medicine, 32(9), 898-905. ‏
  8. Jahanbakhsh Asal, S., & Roshni, R. (2012). Investigating the status and severity of low-level inversions in Tabriz city during the period from 2004 to 2008. Geographical Research, 28(4 (111)), 45-54.
  9. Jonathan D. Kahl, (1989), “Characteristics of the Low-level Temperature Inversion along the Alaskan Arctic Coast”, Digital Object Identifier.
  10. Kachar, H., Mubasheri, M.R., Abkar, A.A., & Rahimzadegan, M. (2011). Extracting temperature inversion parameters from MODIS images in cloudless sky using genetic algorithm. Climatology Research, 1391 (11), 113-123.
  11. Kamani, H., Ashrafi, S. D., Isazadeh, S., Jaafari, J., Hoseini, M., Mostafapour, F. K., ... & Mahvi, A. H. (2015). Heavy metal contamination in street dusts with various land uses in Zahedan, Iran. Bulletin of environmental contamination and toxicology, 94, 382-386. ‏
  12. Khurshiddoost, A.M., Naghizadeh, H., Saeedabadi, R., & Najafi, M.S. (2019). Investigating synoptic patterns of temperature inversion in Tabriz using principal component analysis. Geography and Planning, 24(72), 205-224.
  13. komijane, F., nasallahe, A., nazari, N., & naheid, S. (2014). The Persian Gulf wind analysis using meteorological synoptic stations data. Nivar, 38(85-84), 27-44.
  14. Kotikot, S. M., Flores, A., Griffin, R. E., Nyaga, J., Case, J. L., Mugo, R., ... & Irwin, D. E. (2020). Statistical characterization of frost zones: Case of tea freeze damage in the Kenyan highlands. International Journal of Applied Earth Observation and Geoinformation, 84, 101971. ‏
  15. Largeron, Y., & Staquet, C. (2016). Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmospheric Environment, 135, 92-108. ‏
  16. Lu, R., & Turco, R. P. (1994). Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. Journal of Atmospheric Sciences, 51(15), 2285-2308. ‏
  17. Miao, Y., Hu, X. M., Liu, S., Qian, T., Xue, M., Zheng, Y., & Wang, S. (2015). Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing‐Tianjin‐Hebei region and implications for air quality. Journal of Advances in Modeling Earth Systems, 7(4), 1602-1626. ‏
  18. Najafpour A. A., Junidi Jafari A., & Dosti S. (2016). Analysis of changes in the concentration of five air quality index pollutants. Health Quarterly in the Arena, 3 (2), 17-26. 
  19. Oh, I., Lee, J., Ahn, K., Kim, J., Kim, Y. M., Sim, C. S., & Kim, Y. (2018). Association between particulate matter concentration and symptoms of atopic dermatitis in children living in an industrial urban area of South Korea. Environmental Research, 160, 462-468. ‏
  20. Sadeghi, S., Mofidi, A., Jahanshiri, M., & Dostan, R. (2014). The role of regional scale atmospheric circulation patterns on the occurrence of highly polluted days in Mashhad. Geography and Environmental Hazards, 3 (2), 1-36.
  21. Shamsipour, A.A., Najibzadeh, F., & Hosseinpour, Z. (2011). Simulation of air pollution distribution pattern of Tehran metropolis under wind conditions. Geography and Environmental Hazards, 1 (4), 19-36. 
  22. Tavousi, T., & Hossein Abadi, N. (2017). Evaluation of Temperature Inversion Indicators in Boundary Layer (Case Study: Tehran, Iran). GeoRes 2017; 32 (2):120-132.
  23. Trinh, T. T., Trinh, T. T., Le, T. T., Nguyen, T. D. H., & Tu, B. M. (2019). Temperature inversion and air pollution relationship, and its effects on human health in Hanoi City, Vietnam. Environmental geochemistry and health, 41, 929-937. ‏
  24. World Health Organization. (2006). Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization. ‏
  25. Wu, W., Zha, Y., Zhang, J., Gao, J., & He, J. (2014). A temperature inversion-induced air pollution process as analyzed from Mie LiDAR data. Science of the Total Environment, 479, 102-108. ‏
  26. Yaori, H., & Saze, M, (2011). Levels of inversion in the pollution of Tehran city. The title of the publication. 1390; 11 (20): 89-105.
  27. http://ec.europa.eu/environment/air/ambient.htm