تحلیل زمانی و مکانی شاخص‌های خشکی UNEP و دومارتن در ایران طی دورۀ 1976ـ2020

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 دانشگاه شهید بهشتی تهران

‎10.22052/deej.2024.253864.1032

چکیده

شاخص خشکی به‌عنوان نسبت بین تبخیر و تعرق (دما) و بارندگی، بیانگر ویژگی‌های آب‌وهوایی یک منطقه است. پژوهش حاضر با هدف تحلیل زمانی و مکانی شاخص‌های خشکی UNEP و دومارتن در ایران با داده‌های دمای میانگین (°C)، متوسط رطوبت نسبی (%)، سرعت باد (m/s) و ساعت آفتابی (h) 40 ایستگاه سینوپتیک به بررسی 45 سالۀ طبقه‌بندی اقلیم ایران پرداخت. بارش، دما و تبخیر و تعرق مرجع، پهنه‌بندی و روند تغییرات شاخص‌های خشکی با آزمون من-کندال تحلیل شد. نتایج شاخص UNEP نشان داد بیش از سه‌چهارم ایستگاه‌‌ها دارای اقلیم بسیار خشک، خشک، نیمه‌خشک و مدیترانه‌ای هستند که ازنظر توزیع مکانی در مناطق جنوب‌ غرب، جنوب، جنوب ‌شرق، مرکز، شمال ‌غرب، غرب، شمال ‌شرق کشور گسترش یافته‌ و ازلحاظ اقلیمی مستعد وقوع پدیدۀ بیابان‌زایی هستند. نتایج شاخص خشکی دومارتن نیز منطبق بر شاخص UNEP است. براساس نتایج بررسی بارش، دما و تبخیر و تعرق مرجع در مناطق خشک، کاهش میزان بارش، افزایش دما و تبخیر و تعرق مرجع سبب افزایش نیاز آبی گیاهان و کاهش رطوبت خاک شده است. آزمون من-کندال حاکی از روند کاهشی معنا‌دار در سطوح اطمینان 99، 95 و 90% در بیش از نیمی از ایستگاه‌هاست. این امر در شاخص‌های مورد بررسی بیانگر خشکی اقلیم است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating Temporal and Spatial Variations of UNEP and De Martonne Aridity Indices in Iran From 1976 to 2020

نویسندگان [English]

  • خدیجه جوان 1
  • Ameneh Yahyavi Dizaj 2
1 Urmia university
2 Shahid Beheshti University
چکیده [English]

Introduction: As one of the most threatening natural hazards that has plagued humans for a long time, drought is considered a main natural disaster that affects various aspects of human life (Mishra and Sin, 2010). On the other hand, while dryness is typically associated with desert lands, little precipitation, and very thin vegetation by laymen, it refers to a kind of permanent climatic feature of a region, showing the insufficient amount of precipitation required for the growth of life in the region (Kaviani and Alijani, 2010).
 
Materials and methods: To analyze the temporal and spatial variations of UNEP and De Martonne aridity indices in Iran throughout the study period (1976-2020), this study collected the data of forty synoptic stations in terms of the maximum and minimum temperatures (°C), average relative humidity (%), wind speed (m/s), and sunshine hours (h) using the information published by the Iranian meteorological organization. Then, different regions of Iran were classified in terms of UNEP and De Martonne aridity indices. Moreover, to investigate the influence of the factors involved in those indices such as precipitation, temperature, and reference evapotranspiration, the factors were zoned. Finally, the trend of changes in dryness indices was analyzed using the Mann-Kendall test.
 
Results: The results of the UNEP aridity index classification indicated that from among the forty stations investigated in this study, fourteen stations had a very dry climate. Moreover, ten stations were found to have been located in dry areas and eight in semi-arid regions. On the other hand, more than three-quarters of the stations with very dry, dry, and semi-arid climates were identified as the most susceptible areas to desertification. On the other hand, the results of the De Martonne aridity index analysis confirmed the results found for the analysis of the UNEP index. As for the spatial distribution of the aforementioned indices, it was found that very dry, dry, semi-dry, and Mediterranean classes were located in the southwestern, southern, southeastern, central, northwestern, western, and northeastern regions. The results also revealed that the northern regions, central Alborz highlands, and northern coasts had semi-humid, humid, and very humid climates.
On the other hand, the results of the investigation of precipitation, temperature, and reference evapotranspiration suggested that in arid regions, the plants' demand for water was increased and the soil moisture was decreased due to the decrease in precipitation and the increase in temperature and reference evapotranspiration. Moreover, the results of the Mann-Kendall test for the UNEP and De Martonne indices showed a significant decreasing trend in the confidence level by 99%, 95%, and 90% in more than half of the studied stations, indicating a main challenge in arid and semi-arid regions worldwide, especially in Iran.
This study highlighted the fact that most of Iran's regions were subject to dryness, being placed in severe and very severe desertification risk classes. Therefore, considering the significance of the subject and the necessity of its investigation in arid and semi-arid regions of the world, especially Iran, where water stress is high and water resources are critically limited, it is suggested that for more proper agricultural management, further studies be conducted on the distribution of aridity in the growing season in terms of UNEP and De Martonne aridity indices.
Discussion and Conclusion: This study sought to investigatethe temporal and spatial variations of UNEP and De Martonne aridity indices in Iran using the data collected from forty synoptic stations concerning maximum and minimum temperature rates (°C), average relative humidity (%), wind speed (m/s), and sunshine hours (h). The study also tried to classify the Iranian climate in terms of such aridity indices. To this end, the factors affecting the indices such as precipitation, temperature, and reference evapotranspiration were zoned, and the trend of changes in aridity indices was analyzed using the Mann-Kendall test. The results of the UNEP index showed that more than three-quarters of the stations have a very dry, arid, semi-arid, and Mediterranean climate and in terms of spatial distribution, they are spread in the southwest, south, southeast, center, northwest, west, and northeast regions of the country, which are prone to the occurrence of desertification in terms of climate.
Moreover, the study found that less than a quarter of the stations with semi-humid, humid, and very humid climates were located in the northern regions, central Alborz highlands, and northern coasts. Also, the results of the De Martonne aridity index were reported as consistent with the UNEP index. On the other hand, the results of the investigation of precipitation, temperature, and reference evapotranspiration revealed that in dry areas, the decrease in precipitation and increase in temperature and reference evapotranspiration rates caused an increase in the plants' demand for water and a decrease in soil moisture. Moreover, the results of the Mann-Kendall test indicated a significant decrease in the confidence level by 99%, 95%, and 90% in more than half of the stations.

کلیدواژه‌ها [English]

  • Iran
  • UNEP Index
  • De Martonne Index
  • Trend
  • Mann-Kendall Test
  1. Alaei Taleghani, M., 2003. Geomorphology of Iran, Tehran, Qoms Publishing House, 5-17
  2. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Rome: Fao.
  3. Azizzadeh, M., & Javan, K. (2015). Analyzing trends in reference evapotranspiration in northwest part of Iran. Journal of Ecological Engineering16(2), 1-12.
  4. Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., ... & Overton, I. C. 2016. Drought indicators revisited: the need for a wider consideration of environment and society. Wiley Interdisciplinary Reviews: Water 3(4), 516-536.
  5. Bagheeda, M., Alijani, B., & Ziaian, P ., 2011. Evaluating the possibility of using the NDVI index to analyze and monitor droughts in Esfahan Province. Arid Regions Geographic Studies, 2(4): 1-16.
  6. Fathi Taperasht, A., Shafizadeh-Moghadam, H., & Kouchakzadeh, M. (2022). Spatial-temporal analysis of Iran's climatic classification based on Domarten method and Mann-Kendall test in the statistical period of 1995-2019. Environmental Sciences20(3), 137-154.
  7. Fajardo, A., Gazol, A., Meynard, P. M., Mayr, C., Martínez Pastur, G. J., Peri, P. L., & Camarero, J. J. 2023. Climate change-related growth improvements in a wide niche-breadth tree species across contrasting environments. Annals of Botany, mcad053.
  8. Iran Meteorological Organization 2022. product & services database, from https://irimo.ir/eng/wd/720-Products-Services.html
  9. Kaviani, M., & Alijani, B., 2013. Basics of Hydrology and Meteorology, Tehran, Samit Publications.
  10. Kendall, M.G. 1948. Rank correlation methods, New York: Griffin.
  11. Mann, H.B. 1945. Nonparametric tests against trend, Econometrica, 13(3), 245-259
  12. Mishra, A. K., & Singh, V. P. 2010. A review of drought concepts. Journal of hydrology391(1-2), 202-216.
  13. My, L., Di Bacco, M., & Scorzini, A. R. 2022. On the use of gridded data products for trend assessment and aridity classification in a Mediterranean context: The case of the Apulia Region. Water, 14(14), 2203.
  14. Niloufari, N., 2019. Revision of the classification and regionalization of the climate of Sistan and Baluchistan province. Master's thesis. University of Sistan and Baluchestan.
  15. Park, Chang-Eui, Su-Jong Jeong, Manoj Joshi, Timothy J. Osborn, Chang-Hoi Ho, Shilong Piao, Deliang Chen et al. Keeping global warming within 1.5 C constrains emergence of aridification. Nature Climate Change8, no. 1 .2018. 70-74.
  16. Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., ... & Wada, Y. 2021. Global terrestrial water storage and drought severity under climate change. Nature Climate Change 11(3), 226-233.
  17. Ranjbar, f.,  tabatabaii,  h .2022. Investigation of the trend of Aridity index in the northern stations of Iran during the period 1982-2019, Climate Change Research, 3(9), 12-24.
  18. Taheri Qazvini, A., & Carrion, D .2023. A Spatiotemporal Drought Analysis Application Implemented in the Google Earth Engine and Applied to Iran as a Case Study. Remote Sensing, 15(9), 2218.
  19. Tavousi, T., 2018. Investigating the trend of fluctuations in annual precipitation and UNEP aridity index of climatic zones in the west and northwest of Iran, Scientific-Research Quarterly of Geographical Data (SEPEHR) 27 (105), 85-96.
  20. Tegos, A., Stefanidis, S., Cody, J., & Koutsoyiannis, D. 2023. On the Sensitivity of Standardized-Precipitation-Evapotranspiration and Aridity Indexes Using Alternative Potential Evapotranspiration Models. Hydrology, 10(3), 64.
  21. Ullah, S., You, Q., Sachindra, D. A., Nowosad, M., Ullah, W., Bhatti, A. S., ... & Ali, A. 2022. Spatiotemporal changes in global aridity in terms of multiple aridity indices: An assessment based on the CRU data. Atmospheric Research, 268, 105998.
  22. United Nation, Environment Management Group, 2011.
  23. Wang, F., & Zhang, J. 2020. Arid/humid patterns over Asia in response to national-committed emission reductions under the Paris agreement. Progress in Earth and Planetary Science, 7(1), 1-10.
  24. Wang, X., Jiang, D., & Lang, X. 2021. Future changes in Aridity Index at two and four degrees of global warming above preindustrial levels. International Journal of Climatology, 41(1), 278-294.
  25. Wu, B., Ma, Z., & Yan, N. 2020. Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote sensing of environment 244: 111813.
  26. Wu, X., Zhang, C., Dong, S., Hu, J., Tong, X., & Zheng, X. 2023. Spatiotemporal dynamics of the aridity index in Xinjiang over the past 60 years.
  27. Yahyavi Dizaj, A., Javan, K., Khaledi, S., & Akbari Azirani, T. 2023. Evaluation of Changes in Reference Evapotranspiration in Iran Over the Last Decades. Desert Management, 11(1), 39-58.
  28. Zare, M., Poormohammadi, S., & Sodaizade, H. (2016). Climatic parameters Aridity indices Reference Evapotranspiration Statistical distribuation Iran. Geography and Environmental Planning, 27(2), 103-118.
  29. Zhang, C., Ren, Y., Cao, L., Wu, J., Zhang, S., Hu, C., & Zhujie, S. 2022a. Characteristics of dry-wet climate change in China during the past 60 years and its trends projection. Atmosphere, 13(2), 275.
  30. Zhang, Y., Long, A., Lv, T., Deng, X., Wang, Y., Pang, N., ... & Gu, X. 2022b. Trends, Cycles, and Spatial Distribution of the Precipitation, Potential Evapotranspiration and Aridity Index in Xinjiang, China. Water, 15(1), 62.
  31. Zheleznova, I., Gushchina, D., Meiramov, Z., & Olchev, A. 2022. Temporal and spatial variability of dryness conditions in Kazakhstan during 1979–2021 based on reanalysis data. Climate, 10(10), 144.