برآورد سیلاب مبتنی‌بر تخمین بارش با تئوری فرکتال و به‌کارگیری CN مستخرج از سنتینل 2 در مدل HEC-HMS (حوزۀ آبخیز تیره در منطقۀ بروجرد- دورود)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرم‌آباد، ایران

2 استادیار، گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرم‌آباد، ایران

3 دانشیار، گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرم‌آباد، ایران

‎10.22052/deej.2024.253747.1028

چکیده

برآورد بارش طرح از مهم‌ترین اصول در مدیریت رواناب حوزۀ آبخیز محسوب می‌شود. ازسوی دیگر، استفاده از روش‌های با دقت بالا در محاسبۀ بارش و شمارۀ منحنی و به‌کارگیری آن‌ها در مدل‌های هیدرولوژیکی، باعث کاهش خطاهای ورودی مدل و افزایش دقت شبیه‌سازی می‌شود. به این منظور در این تحقیق، از روش فرکتال برای برآورد بارش و از مدل هیدرولوژیکی HEC-HMS برای برآورد دبی اوج و حجم سیل استفاده شد. در این مدل، برای شبیه‌سازی زیرحوضه‌ها از روش شمارۀ منحنی SCS با هدف برآورد میزان تلفات، از روش «بازگشتی» برای برآورد آب پایه و از روش هیدروگراف واحد SCS برای تبدیل بارش به رواناب استفاده شد. مدل براساس وقایع انتخابی بارش و دبی در تاریخ 17 تا 19 آوریل 2012 و 11 تا 16 آوریل 2016 بر مبنای فرایند بهینه‌سازی خودکار با تابع هدف ریشۀ میانگین مربعات خطا و حداکثر تعداد 100 تکرار با زمان توقف 01/0 و معرفی پارامترهای ورودی برای مراحل واسنجی و صحت‌سنجی اجرا شد. نتایج تحقیق درزمینۀ برآورد بارش براساس تئوری فراکتال و بررسی گشتاورهای آماری با استفاده از اطلاعات 12 ایستگاه در 7 دورۀ ‌بازگشت نشان داد که ‌داده‌های حداکثر شدت ‌بارش دارای ماهیت مونوفراکتالی است. به‌ عبارتی تغییرات توان مقیاس نسبت به ‌مرتبۀ آن کاملاً خطی است و با استفاده از ماهیت مونوفرکتالی می‌توان بین داده‌ها در تداوم‌های مختلف ارتباط برقرار کرد. نتایج تحقیق در بخش شبیه‌سازی بارش-رواناب با استفاده از مدل HEC-HMS نشان داد که برازش مناسبی بین مقادیر شبیه‌سازی و مشاهداتی وجود دارد؛ به‌طوری‌که ضریب نش-ساتکلیف در ایستگاه خروجی حوضه (تیرۀ دورود) در مرحلۀ واسنجی و صحت‌سنجی به‌ترتیب 744/0 و 683/0 به دست آمد. پیش‌بینی مدل براساس هایتوگراف بارش با روش‌های فرکتال و «قهرمان» مبین برازش بسیار مناسب مقادیر دبی اوج و حجم سیل 6 ساعته با ضریب نش-ساتکلیف بیش از 99/0 است. استفاده از CN حاصل از تصاویر سنتینل 2 در قیاس با لندست 8 به‌طور قابل توجهی روی هیدروگراف خروجی مدل HEC-HMS تأثیر داشته است؛ به‌طوری‌که باعث ارتقای ضریب نش-ساتکلیف از 56/0 به 74/0 در مرحلۀ واسنجی و از 39/0 به 68/0 در مرحلۀ صحت‌سنجی شده است. درمجموع نتایج تحقیق می‌تواند کمک مؤثری به افزایش دقت و نتایج بهینۀ مدل بارش-رواناب HEC-HMS نماید تا کارشناسان و مدیران اجرایی در مدیریت حوزۀ آبخیز به‌نحو مطلوب عمل ‌کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating Flood through the Fractal Theory-Based Precipitation Estimation and the CN Extracted from Sentinel 2 in HEC-HMS Model: A Case Study of Thireh Watershed in Borujerd-Dorud Region

نویسندگان [English]

  • Tayebeh Sepahvand 1
  • Mahdi Soleimani- Motlagh 2
  • Hossein Zeinivand 3
  • Amir Mirzaei Mosivand 2
1 Master's degree, Department of Rangeland and Watershed Engineering, Faculty of Natural Resources, Lorestan University, Khoramabad, Iran.
2 Assistant Professor, Department of Rangeland and Watershed Engineering, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran,
3 Associate Professor, Rangeland and Watershed Engineering Department, Faculty of Natural Resources, Lorestan University, Khoramabad, Iran
چکیده [English]

Introduction: Calculating the maximum precipitation intensity is a crucial practical aspect of designing water structures. However, considering the large number of parameters required for different return periods, the traditional method of using intensity-duration-frequency curves faces some practical constraints. Moreover, the issue gets more complicated when there are insufficient statistical data concerning the intended basin. Therefore, maximum precipitation intensity is commonly calculated via the fractal method that generates precipitation data for both long and short continuity periods as a self-similar method. On the other hand, as a commonly occurring phenomenon in rivers, flooding may bring about hazardous consequences, considering the fact that riverbanks are typically densely populated. Therefore, having a profound knowledge of the hydrological system of the intended regions is required to prevent flooding. In this regard, HEC-HMS is commonly used as the most reliable hydrological model available to estimate the rainfall-runoff of watersheds, enabling the researchers to simulate watershed runoff and calculate the peak flood discharge for different return periods.
Material and Methods: Tireh watershed is located in the northernmost part of the Karun watershed and the southern part of the Ashtrinan study area (in Dorud and Boroujerd counties) between 28˚48 to ̍17˚49 eastern longitude and  ̍51˚33 to ̍35˚33 northern latitudes, covering an area of 2127.28 square kilometers. This study estimated the maximum design rainfall throughout the designated return, continuity, and certain continuity periods using the fractal theory and probability distribution of the generalized limit values of type 2. Moreover, the downstream points of the sub-watershed were determined. Also, the soil, vegetation, soil hydrological group, and land use maps were prepared and the pastures' hydrological status was determined. Finally, the value of the curve number of Tireh basin’s sub-watersheds was estimated using the Sentinel 2 images.
The loss method was also calculated using the SCS Curve Number model. On the other hand, the recession method was used to set the base flow method, and the Routing was performed through the Lag method. Then, the rainfall-runoff model was calibrated from April 17 to 19, 2012, and the model was validated for the April 11 to 16, 2016 period. Furthermore, the data regarding the extreme precipitation events and the hydrograph of the floods were used to calibrate and validate the HEC-HMS hydrological model. The model was then evaluated using R2, RMSE, and Nash-Sutcliffe criteria. Finally, the flood was estimated based on the modified parameters of the HEC-HMS model, and the precipitation data concerning different return periods were obtained via fractal theory.
Results and discussion: The results of the rainfall-runoff simulation suggested that the simulated hydrograph enjoyed a higher accuracy than the observed hydrograph, with the Nash-Sutcliffe coefficient being 0.74 and 0.68 during the calibration and validation periods, respectively. Therefore, the accuracy of the model was confirmed for the prediction period. Moreover, it was found that compared to the images collected from Landsat 8, the application of CN that was obtained from Sentinel 2 images significantly affected the output hydrograph of the HEC-HMS model, with the Nash-Sutcliffe coefficient increased from 0.56 to 0.74 and from 0.39 to 0.68 during the calibration and validation periods, respectively.
Conclusion: The findings of the study indicated that based on the fractal theory of precipitation estimation, the application of HEC-HMS model for estimating the flow rate and flood volume over various return periods can help improve decision-making and the flood management system. It should be noted that as the fractal method uses the daily-produced maximum rainfall data, it offers highly accurate information. Moreover, due to their high spatial resolution, the Sentinel 2 images are highly accurate, too. This approach can provide valuable insights for enhancing flood management strategies

کلیدواژه‌ها [English]

  • Scale Power
  • Weight Moment
  • Recursive Digital Filter
  • What Software
  1. Afifi, M.E. 2020. Simulation of rainfall-runoff and flood potential using model HEC-HMS and Fuzzy Logic Case Study of Rudbal Watershed in Fars Province . Natural Geography Quarterly. The twelfth year, No. 46, winter 98. pp. 111-127.
  2. AlamShahi, H., azizian, A., & Brocca, L. (2020). Integration of HEC-HMS Model with the Satellite-based High Spatiotemporal Resolution Dataset for Applying in Flood Simulation. Iranian Journal of Irrigation & Drainage14(3), 724-739.
  3. A. 2006. Principles of applied hydrology. 26th Edition. Imam Reza Publications.
  4. Amirafazli, M. Investigating the effect of Durood fault on Chalan Cholan aquifer (Lorestan province) in order to explore underground water by geoelectric method. Master's thesis, Faculty of Earth Sciences, Shahid Beheshti University, Tehran.
  5. Azhdari Moghadam, M., & Hervey, Z. 2017. Evaluation of IDF curve production methods by relationship based on nature of combination of fractal of precipitation. Journal of Water and Soil Conservation Research. 24(6): 271- 282.
  6. Babaali, H., Ramak, Z., & Sepahvand, R. Flood estimation of watershed design using fractal theory and HEC-HMS runoff rainfall model, a case study of Khorramabad watershed. Journal of Water and soil.32(6): 1107-1097.
  7. Bellal, M., Sillen, X and Zeck,Y. 1996. Coupling GIS with a distributed hydrological model for studying the effect of various urban planning options of rainfall-runoff relationship in urbanized basins, In: Kovar, K. and H.P. Nachtnebel, (eds.). Application of geographic Information Systems in hydrology and water resources management; 99-106 pp. International Association of Hydrological Sciences, Series of Proceedings and Reports.
  8. Daftari, B. Settlement of victims of accidents and accidents and management of camps. Red Crescent Education and Research Center. P. 12. Tehran.
  9. Farzin, M. 2021. Comparison of Landsat 8 and Sentinel 2 Satellite Data Accuracy for Land Use Classification. Environment and Water Engineering, 7(1), 38-49.
  10. Ghanavati, A. 2003. Geomorphological model of flood in Gamasiab basin. Geographical Researches. No. 71.
  11. Hatami Nejad H, Atashafrooz N, Arvin M. 2017. Flood hazard zonation using multi-criteria analysis and GIS (case study: Izeh Township). Disaster Prev. Manag. Know. 7 (2) :44-57
  12. Heidari Chenari F, Fazloula R, Nikzad Tehrani E. 2022. Calibration and Evaluation of HEC-HMS Hydrological Model Parameters in Simulation of Single Rainfall-Runoff Events (Case Study: Tajan Watershed). jwmr. 13(26), 69-81.
  13. Hemmesy, M. S., Yarahmadi, D., Ownegh, M., & Shamsipour, A. A. 2019. Reducing the Flood Hazard Zone in the Kashan Plain Watershed through the Implementation of the Risk Land use Planning Scenario. Environmental Management Hazards, 6(3), 271-285.
  14. Jahanbakhsh Asl, S., Rezaee Banafshe, M., Rostamzadeh, H., & Aalinejad, M. H. 2018. Continuous Simulation of Rainfall-Runoff of Shahrchay Basin of Urmia Using HEC-HMS Model. Hydrogeomorphology5(16), 101-118.
  15. Lorestan Regional Water Organization. 2014. Water level data of observation wells and groundwater quality monitoring data in Borujerd-Dorud.
  16. Nasri, M., & Soleimani Sarud, F. 2011. Prioritizing effective areas for peak flood discharge using the HEC-HMS hydrological model in Sheikh Bahai Dam watershed. Quarterly Josk'hfurnal of Natural Resources Sciences and Techniques, 6(3): 1-15.
  17. Nouri Gheidari, M. 2012. Determine of Design Maximum Intensity of Precipitation by Combined Fractal Theory and Generalized Extreme Value DistributionEngineering and Irrigation Sciences 35(2), 83-90
  18. Rahimzadeh, Z., & Habibi, M. 2018. Simulation of hydrograph of flood with hydrological model HEC-HMS and prediction of return period in Kermanshah Ravansar Basin. Geography and Development, 16(53), 175-194..
  19. Rostami Fathabadi, M., Jafar Biglo, M., & Moghimi, E. (2020). Spatial analysis of flooded and flood-prone areas and it’s hazards in Nourabad city of Lorestan. Environmental Management Hazards7(3), 313-329.
  20. Ramesht, M, H., & Shah Zaidi., S. 2011. Applications of geomorphology in national, regional, economic, tourism planning 2nd Edition, Isfahan University Publications.
  21. Sangab Zagros Consulting Engineers; 2017. Explanatory report on the allocation of water resources in the Dorud-Broujerd study area. Code 2339, Sangab Zagros Consulting Engineers, 81 pages.
  22. Schertzer, D., & Lovejoy, S. 1987. Piysical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. Journal of Geophysical Research, 92:9693 97140.
  23. Sharifi, F., Thaqfian, B., & Talwari, A. 2001. Causes and consequences of the great flood of 1379 in Golestan province, Iran. Proceedings of the International Conference on Flood Estimation. pp. 263-271.
  24. Shabani Bazanshin, A., Emadi, A. & Fazloula R. 2017. Investigation the Flooding Potential of Basins and Determination Flood Producing Areas (Case Study: NEKA Basin). jwmr. 7(14), 28-20.
  25. Vahhabi, J; 2006. Flood risk zoning using hydrological and hydraulic model (case study of Taleghan River). Journal of Research and Construction in Natural Resources. No. 71.