بررسی و خوشه‌بندی خصوصیات زمانی‌- ‌‌مکانی بارش کشور با استفاده از موجک حداکثر هم‌پوشانی و انتروپی چند مقیاسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مرتع و آبخیزداری دانشکده منابع طبیعی دانشگاه ارومیه،ارومیه، ایران.

2 دانشیار، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

‎10.22052/deej.2023.253023.1015

چکیده

بارش از عناصر مهم اقلیمی و از عوامل تأثیرگذار در چرخه‌ی آب به‌شمار می‌رود. تغییرات خصوصیات زمانی-مکانی بارش در یک منطقه، نقش موثری در مدیریت منابع آب آن دارد. هدف از این تحقیق ارزیابی ویژگی‌های بارش سالانه 50 ایستگاه سینوپتیک کشور در بازه زمانی 2020-1980 با استفاده از روش‌های تبدیل موجک گسسته حداکثر هم‌پوشانی و خوشه‌بندی می‌باشد. بدین منظور ابتدا سری زمانی بارش سالانه ایستگاه‌ها با استفاده از روش MODWT و موجک مادر DB4 به چندین زیر سری تجزیه شد، سپس انتروپی زیر سری‎های حاصل از MODWT محاسبه و به‌عنوان ورودی برای منطقه‌بندی بارش استفاده شد. نتایج تجزیه داده‌های بارش نشان داد که در سری زمانی سالانه، زیر سری‌های جزئی کوچک‌تر، فرکانس‌های بزرگ‌تر با تغییرات سریع‌تر و ضرایب جزئی بزرگ‌تر، فرکانس‌های کم را نشان می‌دهند. همچنین، A4 کمترین تغییرات را نشان داد. براساس مقادیر معیارهای ارزیابی، تعداد خوشه‌های بهینه برابر با 4 تعیین شد. مقادیر معیارهای ارزیابی خوشه‌بندی نشان داد که روش K-means با 53/19CHi= ، 26/0= Sci و 08/1= DBi نسبت به روش SOM عملکرد بهتری داشته است. در نهایت ایستگاه‌های سینوپتیک کشور برمبنای شاخص موجک گسسته حداکثر هم‌پوشانی- انتروپی به 4 خوشه جدا شد و ایستگاه‌های چابهار، شاهرود، آبادان و زنجان به‌عنوان مراکز خوشه انتخاب شدند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating and Classifying Temporal-Spatial Characteristics of Iran’s Annual Precipitation Using Maximal Overlap Discrete Wavelet Transform and Multiscale Entropy

نویسندگان [English]

  • Sepideh Choobeh 1
  • Hirad Abghari 2
  • Mahdi Erfanian 2
1 Department of Range & Watershed Management Ph.D. Student in Watershed Engineering (Hydrology and Water Resources). Faculty of Natural Resources, Urmia University, Urmia, IRAN.
2 Associate Professor, Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, Iran.
چکیده [English]

Introduction: Assessing precipitation alterations in a large area like Iran is required for the identification of those areas that are more vulnerable to changes in precipitation patterns, considering the fact that such changes may significantly influence water availability, agriculture, and other sectors that are dependent on water resources.  On the other hand, understanding the spatial variability of precipitation patterns can help develop purposive strategies, including drought or flood management in specific regions. Moreover, as severe weather events such as floods and droughts can devastate communities and their infrastructure, such an understanding can inform decisions made concerning disaster risk reduction efforts. Therefore, assessing precipitation variations is essential for the effective management of water resources and the reduction of disaster risks.
 
Materials and methods: This study suggests a new method for analyzing precipitation properties in Iran, using a mixture of Maximal Overlap Discrete Wavelet Transform (MODWT) and Multiscale Entropy (MDE) techniques. This approach allows for a more detailed and accurate assessment of the spatial and temporal characteristics of precipitation properties, preparing the ground for the development of appropriate strategies for different regions in Iran. To this end, annual precipitation data collected from fifty Iranian synoptic stations for 1980-2020 were analyzed. Then, after classifying the precipitation data into different subseries, the concept of entropy was used to measure precipitation variability. Moreover, MDE values were used as input data for clustering purposes, followed by the calculation of internal evaluation criteria to be used for the determination of the optimal number of clusters and the most suitable clustering method calculated.
 
Results: The variations and trends of the precipitation data can be identified through the analysis of partial coefficients D1-D4 and the approximation coefficient. Accordingly, while the smaller partial sub-categories indicate more rapid variations at higher frequencies, the greater partial coefficients show more moderate variations at lower frequencies. Moreover, the approximation coefficient reveals the slightest variations at low frequencies in annual time series. The study’s results suggested that northern and northwestern Iranian regions that are primarily characterized by rainy, cold, and in some cases semi-arid climates experienced the greatest variations in terms of annual precipitation. On the other hand, the eastern and southern parts of Iran, which are mostly dry areas, experienced more moderate variations in annual precipitation rates. Therefore, according to the results found in this study, it could be argued that northern and northwestern Iran enjoy more precipitation variability than other parts of the country. Furthermore, the D3 sub-category (eight years) was found to have the greatest variations in terms of MWE. On the other hand, based on the values of Sci, DBi, and CH index, the k-means clustering method performed better than SOM (Sci=0.41, DBi= 1.22, and CH= 14.58). Finally, fifty Iranian synoptic stations were categorized into four clusters based on the MWE index, with Chabahar, Shahrud, Abadan, and Zanjan being selected as core clusters.
 
Discussion and Conclusion: The current study proposed a methodology for analyzing and zoning Iran’s annual precipitation based on the multiscale entropy method, considering the fact that the period and trend of the annual time series could be identified via the analysis of the precipitation series. Following the analysis of the collected data, this study used the multiscale entropy method to record precipitation variability in each synoptic station. On the other hand, the determination of SOM and k-means input data based on MWE values helped reduce the input data, leading to an increase in the accuracy of the zoning method and the selection of the homogenous clusters based on the proposed methodology. The results of the study indicated that generally, the K-means method offered more homogeneous areas than the SOM method. Moreover, the homogeneous distribution of annual precipitation variations obtained based on the K-means-derived clusters confirmed the positive performance of the methodology proposed in this study, which involves the identification of hydrologic uncertainty and temporal-spatial variations of precipitation in those stations related to a specific cluster. The methodology seeks to create distinct clusters of stations that share common features. This approach can provide insights into the spatial variability of hydrological processes and help improve water resource management by identifying areas susceptible to hydrological extremes such as floods or droughts. Some studies have already been conducted on the spatial clustering of precipitation stations in Iran using different methods, including the application of geographical proximity or precipitation rate as criteria for clustering. However, the method used in the current study involved clustering based on similarity in hydrological uncertainty and temporal-spatial complexity, which is consistent with the findings of Roshangar and Alizadeh (2019), and Roshangar et al. (2019). Identifying hydrologically homogeneous regions and their associated precipitation characteristics can significantly enhance the effective management of water resources in terms of adapting to climate change, preventing damage to water environments, and mitigating the impact of climate-related disasters. Therefore, the proposed methodology for spatial clustering of synoptic stations could be useful in managing water resources and all precipitation-related sectors and variables such as runoff and soil moisture. However, this study faced some limitations such as the small number of synoptic stations and the short length of the statistical period. Therefore, it is recommended that the methodology be applied to more stations at more varied time scales.

کلیدواژه‌ها [English]

  • Clustering
  • Discrete Wavelet Transform
  • Entropy
  • Iran
  • Maximal Overlap
  • Precipitation
  1. Abghari, H., 2008. Investigation of Wavelet Neural Networks and Auto-regressive Models to Intelligent Prediction of Monthly River Flow. Ph.D. Thesis in Hydrology, Faculty of Natural Resources, University of Tehran.
  2. Adamowski, K., Prokoph, A., & Adamowski, J., 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes 23(18), 2686-2696.
  3. Addou, R., Hanchane, M., Krakauer, N. Y., Kessabi, R., Obda, K., Souab, M., & Achir, I. E., 2023. Wavelet Analysis for Studying Rainfall Variability and Regionalizing Data: An Applied Study of the Moulouya Watershed in Morocco. Applied Sciences 13(6), 3841.
  4. Agarwal, A., Maheswaran, R., Sehgal, V., Khos, R., Sivakumar, B., & Bernhofer, C., 2016. Hydrologic regionalization using wavelet-based multiscale entropy method. Journal of Hydrology 538, 22–32.
  5. Alizadeh Gharamaleki, F. 2018. Investigating changeability of precipitation and related variables using Emprical Mode Decomposition algorithm and spatial clustering. Ph.D. Thesis in civil engineering Hydraulic structures, Aras International Campus, University of Tabriz.
  6. Armesh, M., 2017. Analysis of the Variability in Indian Summer Monsoon precipitations Influences on the Southeast of Iran Regarding to Teleconnection and Climatic Indices. Ph.D. Thesis in Climatology, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan.
  7. Canchala, T., Ocampo-Marulanda, C., Alfonso-Morales, W., Carvajal-Escobar, Y., Ceron, W. L., & Caicedo-Bravo, E., 2022. Techniques for monthly rainfall regionalization in southwestern Colombia. Anais da Academia Brasileira de Ciências 94.
  8. Chen, N., Chen, L., Ma, Y., & Chen, A., 2019. Regional disaster risk assessment of China based on self-organizing map: clustering, visualization and ranking. International Journal of Disaster Risk Reduction 33, 196-206.
  9. Claps, P., Ganora, D., & Mazzoglio, P., 2022. Rainfall regionalization techniques. In Rainfall. Elsevier. Amsterdam, Nederland (pp. 327-350).
  10. Darand, M., Mansouri Daneshvar, M.R., 2014. Regionalization of precipitation regimes in Iran using principal component analysis and hierarchical clustering analysis. Environmental Processes 1, 517-532.
  11. Davies, L., & Bouldin, D.W., 1979. A cluster separation measure. IEEE Trans Pattern
  12. Anal Mach Intell 1(2):224–227.
  13. Domroes, M., Kaviani, M., & Schaefer, D., 1998. An analysis of regional and intra-annual precipitation variability over Iran using multivariate statistical methods. Theoretical and Applied Climatology 61:151– 159.
  14. Isazade, M., & Dinpashoh, Y., 2018. Spatio- Temporal delineation of Iran’s Precipitation Climate and Selection of Indicator Stations Using the Multivariate Statistical Methods. Water and Soil Science 28(3), 169-181.
  15. Fazel, N., Berndtsson, R., Uvo, C. B., Madani, K., & Kløve, B., 2018. Regionalization of precipitation characteristics in Iran’s Lake Urmia basin. Theoretical and Applied Climatology 132, 363-373.
  16. Govender, P., & Sivakumar, V., 2020. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric pollution research 11(1), 40-56.
  17. Guntu, R.K., Maheswaran, R., Agarwal, A., & Singh, V.P. 2020. Accounting for temporal variability for improved precipitation regionalization based on self-organizing map coupled with information theory. Journal of Hydrology 590, 125236.
  18. Hartigan, J. A., & Wong, M.A., 1979. Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Applied Statistics 28(1), 100-108.
  19. Hsu, K.C., & Li, S. T., 2010. Clustering spatial–temporal precipitation data using wavelet transform and self-organizing map neural network. Advances in Water Resources 33(2), 190-200.
  20. Ilbay-Yupa, M., Lavado-Casimiro, W., Rau, P., Zubieta, R., & Castillón, F., 2021. Updating regionalization of precipitation in Ecuador. Theoretical and Applied Climatology 143, 1513-1528.
  21. Isazadeh, M., & Dinpashoh, Y. (2018). Spatio- Temporal delineation of Iran’s Precipitation Climate and Selection of Indicator Stations Using the Multivariate Statistical Methods. Water and Soil Science28(3), 169-181.
  22. Khosravi, M., Doostkamian, M., Mirmoosavi, S.H., Bayat, A., & Beyg Rezaei, E., 2014. Classification of temperature and precipitation in Iran using geo statistics and cluster analysis methods. Journal of Regional Planning 4(13), 121-132.
  23. Kasturi, , Acharya, J., & Ramanathan, M., 2003. An information theoretic approach for analyzing temporal patterns of gene expression. Bioinformatics 19(4):449–458.
  24. Kohonen, T., 2013. Essentials of the self-organizing map. Neural networks 37, 52-65.
  25. Li, M., Jiang, Z., Zhou, P., Le Treut, H., & Li, L., 2020. Projection and possible causes of summer precipitation in eastern China using self-organizing map. Climate Dynamics 54(5-6), 2815-2830.
  26. Li, C., & Biswas, G., 2002. A Bayesian approach for structural learning with hidden Markov models. Scientific Programming 10(3), 201-219.
  27. Lucieer, V., & Lucieer, A., 2009. Fuzzy clustering for seafloor classification. Marine Geology 264(3-4), 230-241.
  28. MacQueen, , 1967, Some methods for classification and analysis of multivariate observations. Proceeding of Fifth Berkeley Symposium on Mathematical Statistics and Probability 1: 281–297.
  29. Mafakheri, O., Saligheh, M., Alijani, B., & Akbary, M., 2017. Zonnation of temporal changes and uniformity of rainfall in Iran. Physical Geography Quarterly 49(2), 191-205.
  30. Masoudian, S.A., Darand, M., & Karsaz, S., 2011. Rainfall zoning in west and north-west of Iran by cluster analysis method. Physical Geography Quarterly 4(11), 35-44.
  31. Mishra, A.K., Özger, M., & Singh, V.P., 2009. An entropy-based investigation into the variability of precipitation. Journal of Hydrology 370(1-4), 139-154.
  32. Modarres, R., 2006. Regional precipitation climates of Iran. Journal of Hydrology: 45 (1), 13–27.
  33. Mohamadyariyan M, Tavousi T, khosravi M, Hamidiyanpour M. Zoning of Iranian Heavy Precipitation Regime. GeoRes 2019; 34 (2) :183-192.
  34. Naikoo, M.W., Talukdar, S., Das, T., & Rahman, A., 2022. Identification of homogenous rainfall regions with trend analysis using fuzzy logic and clustering approach coupled with advanced trend analysis techniques in Mumbai city. Urban Climate 46, 101306.
  35. Nourani, V., Roushangar, K., & Andalib, G., 2018. An inverse method for watershed change detection using hybrid conceptual and artificial intelligence approaches. Journal of Hydrology 562, 371-384.
  36. Omidvar, K., Omidvar, K., & Khosravi, Y. (2010). Investigation of Change of Some Climatic Elements in North Coast of Persian Gulf Using Kendal Test. Geography and Environmental Planning, 21(2), 33-46.
  37. Paul, R.K., Paul, A.K., & Bhar, L.M., 2020. Wavelet-based combination approach for modeling sub-divisional rainfall in India. Theoretical and Applied Climatology 139, 949-963.
  38. Parviz, L., & Beyrami, A., 2023. Evaluation of empirical mode decomposition and maximal overlap discrete wavelet transform approaches in trend analysis of meteorological variables. Journal of Agricultural Meteorology. Articles in Press, Available Online from 15 May 2023
  39. Raziei, T., 2016. Identification of homogeneous precipitation sub-regions for Iran using principal component analysis. Iranian Journal of Geophysics 10(3), 128-144.
  40. Raziei, T., 2018. A precipitation regionalization and regime for Iran based on multivariate analysis. Theoretical and applied climatology 131(3-4), 1429-1448.
  41. Raziei, T., Bordi, I., & Pereira, L.S., 2008. A precipitation-based regionalization for Western Iran and regional drought variability. Hydrology and Earth System Sciences 12, 1309–1321.
  42. Roradeh, H., Ghasemi, J., Yousefi, Y., & Ghasemi, Z., 2019. Clustering the rainfall of Iran with using new approach based on Singular Value Decomposition Mapping and Fuzzy C-Means Clustering. Geographical Planning of Space Qarterly Journal 9(31), 113-124.
  43. Roushangar, K., & Alizadeh, F., 2019. Using multi-temporal analysis to classify monthly precipitation based on maximal overlap discrete wavelet transform. Journal of Hydroinformatics 21(4), pp.541-557.
  44. Roushangar, K., Dolatshahi, M., & Alizadeh, F., 2023. MODWT and wavelet coherence-based analysis of groundwater levels changes detection. Paddy and Water Environment 21, 1, 59-83.
  45. Roushangar, K., Moghaddas, M., & Ghasempour, R. (2020). Investigation of Temporal-Spatial Characteristics of Precipitation Using Discrete Maximal Overlap Wavelet Transform (MODWT) and Spatial Clustering Tools. Journal of Climate Research1399(43), 143-158.Saghafi, M., Barati, G.R., Alijani, B., & Moradi, M., 2024. Zoning and analysis of pervasive rainfall in rainy areas of Iran In the statistical period of 30 years (1987-1987). Journal of Applied researches in Geographical Sciences 23(71), 103-121.
  46. Santos, M., Fragoso, M., & Santos, J.A., 2017. Regionalization and susceptibility assessment to daily precipitation extremes in mainland Portugal. Applied Geography 86, 128-138.
  47. Shannon, C.E., 1948. A mathematical theory of communication. Bell system technical journal 27(3), 379-423.
  48. Sinaga, K. P., & Yang, M.S., 2020. Unsupervised K-means clustering algorithm. IEEE access 8, 80716-80727.
  49. Taghavi, F., Nasseri, M., Bayat, B ., Motevallian, S. S., & Azadifard, D., 2012. The Identification of Climatic Patterns of Iran Based on Spectral Analysis and Clustering of Precipitation and Temperature Extreme Values. Physical Geography Research Quarterly 43(77), 109-124.
  50. Wang, X., & Xu, Y., 2019. "An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index". 2nd International Conference on Advanced Materials, Intelligent Manufacturing and Automation. China
  51. Yazawa, T., & Shoji, A., 2023. Spatial analysis of historical extreme rainfall characteristics using regionalization in the Lake Biwa and Yodo River Basin, Japan. Journal of Water and Climate Change 14(3), 916-936.

Zerouali, B., Chettih, M., Abda, Z., Mesbah, M., Santos, C.A.G., & Brasil Neto, R. M., 2022. A new regionalization of rainfall patterns based on wavelet transform information and hierarchical cluster analysis in northeastern Algeria. Theoretical and Applied Climatology 147(3-4), 1489-1510