بررسی تغییرات سطح آب زیرزمینی دشت روانسر ـ سنجابی تحت سناریوهای اقلیمی CIMP5

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکده منابع طبیعی

3 استادیار گروه مدیریت منابع محیطی، جهاد دانشگاهی کرمانشاه

4 دانشیار دانشکده علوم و فنون نوین، دانشگاه تهران

5 استادیار گروه علوم مهندسی آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری

‎10.22052/deej.2023.248647.1001

چکیده

امروزه در نظر گرفتن آب زیرزمینی به‌عنوان سامانۀ تأمین مهم نیاز آبی، برای بررسی سناریوهای مدیریتی و تغییرات آب‌وهوایی ضروری به نظر می‌رسد. بدین ‌منظور این تحقیق در ابتدا به ارزیابی شبیه‌سازی آب زیرزمینی می‌پردازد و در ادامه، اثر احتمالاتی تغییرات آب‌وهوا را برای محدودۀ مطالعاتی روانسر- سنجابی واقع در غرب ایران بررسی می‌کند. در بخش اول، از اطلاعات مهرماه 1389 برای دورۀ پایدار و از آبان 1389 تا 1391 برای دورۀ واسنجی مدل در نظر گرفته شد. سپس شبیه‌سازی آب زیرزمینی توسط کد MODFLOW برای دورۀ پایۀ 1380ـ1400 شبیه‌سازی شد. در ادامه برای دورۀ آتی تا سال 2040 پیش‌بینی انجام شد. در بخش دوم به‌منظور بررسی اثر تغییر اقلیم روی منابع آب زیرزمینی، خروجی‌های مدل ریزمقیاس نمایی LARS-WG تحت سناریوهای RCP 2.6، RCP 4.5 و RCP 8.5  برای بازۀ‌ زمانی آتی 2021ـ۲۰۴۰ مورد استفاده قرار گرفت. نتایج شبیه‌سازی آب زیرزمینی نشان داد که در طول دورۀ آتی دما به میزان 5/0 درجه نسبت به دورۀ پایه (1986ـ2005) کاهش خواهد یافت اما الگوی کاهش یا افزایش بارندگی نامشخص است. با وجود این تراز آب زیرزمینی حدود 20 تا 60 سانتی‌متر کاهش خواهد یافت. درنتیجه با ادامۀ روند کنونی در صورت عدم اتخاذ تصمیم مناسب در جهت بهبود وضعیت آب زیرزمینی و عدم به‌کارگیری راهکارهایی در جهت کاهش اثر تغییر اقلیم، در آینده این محدوده خسارات جدی را متحمل خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating Alterations in the underground water level of Ravansar- Sanjabi Plain under CIMP5 climate scenarios

نویسندگان [English]

  • Milad Soltani 1
  • karim solaimani 2
  • khalil jallili 3
  • Sayed Javad Sadatinejad 4
  • Fatemeh Shokrian 5
1 Sari Agricultural Sciences and Natural Resources University
2 Sari University of Agricultural Sciences and Natural Resources, Faculty of Natural Resources
3 Assistant Professor, Department of Environmental Resource Management, Academic jihad of Kermanshah
4 Associate Professor of Faculty of New Sciences and Technolgiest, University of Tehran
5 Assistant Professor, Dept.of watershed management, Sari Agricultural Sciences and Natural Resources University
چکیده [English]

Introduction: The water resources of the earth have currently been reduced due to various factors such as rising population, and an increase in human activities, including the growth of urbanization and industries, and increasing agricultural and economic activities. Therefore, water shortage seems to be one of the most important crises that threaten the future life of living creatures.
In this regard, arid and semi-arid regions are subject to more risks due to reasons such as climate change, drought, and excessive extraction of groundwater resources for industrial, agricultural, and drinking purposes. On the other hand, in addition to the increase in temperature, climate change will also cause changes in precipitation and evaporation rates, leading to the loss of large amounts of water by decreasing precipitation and increasing evaporation rates, respectively.
In such a situation, the groundwater resources are highly pressurized, considering the continuous drop in the water level, the fact that the amount of harvest is always more than that of the recharge, and the irreparable damages that may follow. Therefore, this study sought to investigate the influence of climate change on the groundwater level of the Ravansar-Sanjabi basin and to analyze its results. To this end, first, the groundwater simulation was carried out by Mudflow code. Then, the effect of climate change on groundwater resources was investigated during the future period (2021-2040), taking into account different climate scenarios.
 
Materials and Methods: Known as a relatively rectangular plain with north-south extension, the Ravansar-Sanjabi plain is located in the northwest of Kermanshah city (the center of Kermanshah province) between 18'26°46'' to 00'50°46'' eastern longitudes and 00'25°34'' to 34’50’48’’ latitude''.
According to the latest nationally published statistics, there are 881 wells in the Ravansar-Sanjabi basin with a discharge of 27 million cubic meters per year (Figure (3). Moreover, the main sources of the basin’s recharge are precipitation and the amount of water returned from exploitation wells, with approximately 17% of the precipitation in the area being considered as recharge.
 
Results and discussion: As for the groundwater modeling, there was an acceptable correlation between the simulation and observation data under both stable and unstable states, indicating the appropriate performance of the MODFLOW simulation model in the Ravansar-Sanjabi basin. Moreover, the error-index value was found to be 0.95 for groundwater modeling with RMSE, suggesting an appropriate accuracy of the model in an unstable state.
In addition, the values of the explanation coefficient and MAE were reported as 0.98 m and 0.87 m, respectively, falling in a suitable error range. On the other hand, the calibrated hydraulic conductivity values showed that the hydraulic conductivity values varied from 52 and 30 meters per day in the north of the basin. However, the greatest hydraulic conductivity values were found in the southeastern part of the basin, ranging from 16.5 to 29 meters per day. Also, the average values of hydraulic conductivity belonged to the central area of the basin, ranging from 8 to 12 meters per day.
According to the results obtained for the selection of an appropriate climate model, it was found that out of 20 existing models, the HadGEM2-ES, CanESM2, and CSIRO-MK3-6-0 had the greatest values (15.5, 15.5, and 17.25, respectively), being selected as the best models in this research.  Moreover, the results of climate change indicated that the precipitation rate did not change much throughout the study period (2021-2040). On the other hand, while changes in the precipitation rate were found to be small under the RCP2.5 scenarios, they were significant under the RCP8.5 scenarios, especially the reduction of precipitation in some months.
As regards the temperature changes throughout the study period (2021-2040) under all three climate scenarios, the results indicated a decrease in temperature rates, with the lowest and highest decrease occurring under the RCP2.6 and RCP8.5 scenarios, respectively. Accordingly, the temperature is predicted to decrease by approximately 0.5 degrees Celsius in the worst case.
It was also found that the groundwater level varied from 20 cm to 60 cm in all months, with the lowest balance reduction having occurred in January, and the highest balance reduction having occurred in April, May, and June. Moreover, according to the results of changes in temperature and precipitation under the three climate scenarios, it could be argued that the greatest and slightest decrease in the groundwater level will occur under the RCP 85 and RCP 26 scenarios, respectively.
 

کلیدواژه‌ها [English]

  • Ground Water
  • Ravansar-Sanjabi Basin
  • Climate Change
  • Simulation: IPCC
  1. Adeli, B., & kangarani, h., & sadodin, a., & Bazrafshan, O., & Armin, M. (2018). Using the WQI method and the Man-Kendall test to assess the qualitative and quantitative status of groundwater aquifers (case study: Sarkhoon plain, Hormozgan province). Iranian Journal of Ecohydrology, , 5(3 ), 801-811. [In Persian]
  2. Aghakhani Afshar &. Hassanzadeh (2019). Using the MIROC-ESM model in investigating the hydro-climatic conditions of a small-scale watershed under the effect of climate change. Journal of Civil and Environmental Engineering of Tabriz University, 49(94), 47-59
  3. Azizi F, Asghari Moghaddam A, Nazemi A. Groundwater Flow and Salinity Intrusion Simulation in Malekan Plain Aquifer. jwmseir. 2019; 13 (45) :32-43 . [In Persian]
  4. Bayat, M., Eslamian, S., Shams, G., & Hajiannia, A. (2020). Groundwater level prediction through GMS software–case study of Karvan area, Iran. Quaestiones Geographicae39(3), 139-145.
  5. Boughariou,E, Mokadem, N., Mudarra, M., Brahim, F. B., Andreo, B., Hamed, Y., & Bouri, S. (2018). Mapping potential zones for groundwater recharge and its evaluation in arid environments using a GIS approach: case study of North Gafsa Basin (Central Tunisia). Journal of African Earth Sciences141, 107-117
  6. Delavar, H., VahabzadahKbriya, G., Ghorbani, J., Ashrafi, M. (2021). Investigating of quantitative trend changes in Aquifer water table during1992 -2011 by Mann-kendall test (Case study: Firoozabad plain, Fars province, Iran). New Findings in Applied Geology, 15(30), 165-176 [In Persian].
  7. Diancoumba, O., Toure, A., Keita, S., Konare, S., Mounir, Z. M., & Bokar, H. (2023). Predicting Groundwater Level Using Climate Change Scenarios in the Southern Part of Mali. American Journal of Climate Change, 12(1), 21-38.
  8. Edalat, A., Rajabi, A. M., & Khodaparast, M. (2022). Numerical modeling of groundwater flow in Ali Abad Plain of Qom to predict fluctuations of the water table and hydraulic conductivity. Scientific Quarterly Journal of Iranian Association of Engineering Geology [In Persian].
  9. Eskandari Doman, Hadi, Gholami, Hamid, Mahdavi, Rasool, Khorani, Asadullah, & Lee, Junran. (2020). Evaluation of land degradation using water efficiency index and drought (case study: Fars province). Pasture and watershed scientific-research journal, 74(1), 103-120. doi: 10.22059/jrwm.2021.314310.1550
  10. Ghamarnia, H., Enayati, S., Amini, A. Numerical Simulation of Bijar-Divandere Plain Aquifer Using MODFLOW Code and Investigation in The Effects of Drought on Its Quantitative Changes. Environment and Water Engineering, 2022; 8(1): 15-30. doi: 10.22034/jewe.2021.285092.1562
  11. Homayunpur, B., Goodarzi, M., Zehtabian, Q., Motamedvaziri, B., & Ahmadi, H. (2022). Assessing climate change impacts on groundwater fluctuation in Borkhar Plain, Isfahan. Watershed Engineering and Management, 14(4), 465-480. [In persian]
  12. (2014). Summary for Policymakers. In: Ipcc. Climate Change. Impact. Adaptation and Vulnerability. Contribution of Working Group 2 to the Fifth Assessment Report of the Intergovernment Panel of Climate Change. 132 P. Cmbridge, UK and New York. USA. Cambridge University Press.
  13. Jalili, Khalil, Moradi. Big Haddad, Omid. (2017). Optimizing the allocation of land and irrigation water based on the water balance perspective using linear programming. Water and soil, 31(2), 372-385
  14. Kayhomayoon Z, Babaeian F, Ghordoyee Milan S, Arya Azar N, Berndtsson R. A Combination of Metaheuristic Optimization Algorithms and Machine Learning Methods Improves the Prediction of Groundwater Level. Water. 2022 Feb 26;14(5):751.
  15. Kermanshah Regional Water Company, (2020). Explanatory reports on the ban and extension of the ban on the development of exploitation of underground water resources in the study areas of the plains of Kermanshah province, Ravansar-Sanjabi study area with code 2224. Gamasiab Consulting Engineers, Shahrivar 2014. p. 87.
  16. Malekzadeh, M., Kardar, S., & Shabanlou, S. (2019). Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models. Groundwater for Sustainable Development9, 100279.
  17. Milan, S. G., Roozbahani, A., & Banihabib, M. E. (2018). Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources. Journal of hydrology566, 421-434.
  18. Mohammadi, A., & Ghaeini-Hessaroeyeh, M. (2021). Groundwater Modeling of Astaneh-Kuchesfehan Aquifer. Irrigation Sciences and Engineering, 44(3), 29-44 [In Persian].
  19. Momene, Sadegh, Azari, Arash, & Iqbalzadeh, Afshin. (2020). Evaluation of the effect of climate change on the level of underground water in future periods, case study: Chamchamal Plain. Watershed Engineering and Management, 12(4), 913-928. Dec2019-Jan2020. doi: 10.22092/ijwmse.2020.122960.1530
  20. Najafi, S., Sharafati, A., & Kardan moghaddam, H. (2022). Evaluating the effect of climate change on groundwater level changes in the Sari-Neka coastal aquifer. Irrigation and Water Engineering, 13(2), 312-332. [In persian]
  21. Panahi, M., & MISAGI, F., & Asgari, P. (2018). Simulation and Estimate of Groundwater Level Fluctuations Using Gms (Case Study: Zanjan Plain). Enviromental Sciences, 16(1), 1-14. [In Persian]
  22. Rossman, N. R., & Zlotnik, V. A. (2013). Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States. Hydrogeology Journal21(6), 1173.
  23. Roushangar, K., & Nourani, V., & Dolatshahi, M. (2020). Investigation and trend identification of groundwater level variations using discrete wavelet transform and non-parametric tests (case study: Azarshahr plain). Iran- Water Resources Researvh, 16(1), 102-115. [In Persian].
  24. Sahoo, S., Swain, S., Goswami, A., Sharma, R., & Pateriya, B. (2021). Assessment of trends and multi-decadal changes in groundwater level in parts of the Malwa region, Punjab, India. Groundwater for Sustainable Development14, 100644.
  25. Shamsudduha, M., R. E. Chanller, R. G. Taylor and K. M. Ahmed. 2009. Recent trends in groundwater levels in a highly seasonal hydrological system: The Ganges- Brahmaputra- Meghana delta. Hydrology and Earth System Science 13: 2373- 2385.
  26. Sharan, A., Lal, A., & Datta, B. (2023). Evaluating the impacts of climate change and water over-abstraction on groundwater resources in Pacific island country of Tonga. Groundwater for Sustainable Development, 20, 100890.
  27. Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., ... & Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic change109, 5-31.
  28. Zeynali, B., Jalali, T., & Mostafavi, H. (2023). Assessment of the effect of climate change on recharge resulted from precipitation in the Shiramin basin. Journal of Environmental Science Studies, 8(2), 6589-6602. [In persian]