منشأیابی گردوغبار با استفاده از مدل بیشینۀ آنتروپی در شرق ایران

نوع مقاله : مقاله پژوهشی

نویسنده

دانشگاه آزاد اسلامی واحد شهرقدس، تهران، ایران

‎10.22052/deej.2023.248205.0

چکیده

گردوغبار به‌عنوان یکی از مهم‌ترین انواع آلودگی‌های جوی و محیط‌ زیستی، اثرات بحرانی بر سلامت انسان، کشاورزی و صنعت می‌گذارد؛ از‌این‌رو گام اصلی در کنترل خطرات طوفان گردوغبار، شناسایی منابع دارای پتانسیل گردوغبار است. در پژوهش حاضر، الگوریتم مدرن بیشینۀ آنتروپی به‌منظور پیش‌بینی منابع پتانسیل گردوغبار در شرق ایران مورد استفاده قرار گرفت. بنابراین مکان‌هایی که توسط سازمان زمین‌شناسی و اکتشافات معدنی به‌عنوان منابع گردوغبار شناسایی شده بود، به‌عنوان متغیر وابسته استفاده شد. منابع گردوغبار شناسایی‌شده به‌ نسبت 70 به 30 برای مجموعه داده‌های آموزش و اعتبارسنجی تفکیک شد. در گام بعدی، 8 فاکتور مؤثر بر وقوع گردوغبار شامل، سنگ‌شناسی، کاربری ‌اراضی، بارندگی، شیب، لندفرم، سرعت باد، حداکثر دما و پوشش‌ گیاهی به‌عنوان متغیرهای پیشگویانه به ‌کار گرفته شد، سپس نتایج حاصل از نقشۀ پیش‌بینی به‌وسیلۀ روش سطح زیر منحنی ROC، اعتبار‌سنجی شد. نتایج نشان داد الگوریتم بیشینۀ آنتروپی دارای عملکرد خوب 75% برای پیش‌بینی مکان‌های دارای پتانسیل منبع گردوغبار است. سرعت باد، بارندگی، لندفرم و کاربری اراضی مهم‌ترین فاکتورها در شناسایی موقعیت منابع گردوغبار بودند. مطابق نقشۀ پیش‌بینی، مهم‌ترین منابع دارای پتانسیل گردوغبار در بخش‌های شرقی منطقه مطالعاتی شناسایی شدند. لذا پیشنهاد می‌شود مدل بیشینۀ آنتروپی به‌عنوان یک مدل مؤثر در نواحی با سابقۀ طوفان‌های گردوغبار به‌منظور کنترل طوفان استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying Sources of Dust Using Maximum Entropy Model in Eastern Iran

نویسنده [English]

  • Faezeh Rajabzadeh
چکیده [English]

Introduction: As a major type of atmospheric and environmental pollutant, dust bears terribly harmful consequences for agriculture, industry, and human health. In this regard, identifying the potential sources of dust is the main required step in managing and controlling the dust phenomenon and reducing its risks, especially in arid and semi-arid environments. Therefore, this study used the modern maximum entropy algorithm to predict the potential sources of dust in eastern Iran by considering the effective environmental factors.
 
Materials and Methods: As for the modeling process, eight effective factors in dust generation, including land slope, landform, vegetation, precipitation, wind speed, lithology, land use, and maximum air temperature were analyzed as independent variables involved in the occurrence of dust storms. Moreover, petrologic, land use, pedologic, precipitation, vegetation, and slope maps were prepared.
On the other hand, the locations identified by Iran’s Geological Survey as the sources of dust were used as dependent variables. Furthermore, the distribution of sand dunes, bare lands, dried beds of lakes, dried wetlands, and other places along the region’s dominant wind route was determined using the remote sensing technique and the MODIS sensor images extracted from Aqua and Terra satellites. Moreover, 70% and 30% of the identified sources of dust were randomly assigned to training and validation datasets, respectively. Then, the potential areas for generating dust were investigated using the maximum entropy algorithm and the MAXENT software.
 Finally, a model was developed for identifying the potential areas of dust generation with the highest accuracy. After developing a complete model comprising of all relevant variables, the modeling was replicated to the number of variables, whereby each individual variable was removed from the modeling process in each replication of the process. Therefore, the influence of each variable in predicting the desired areas was evaluated and the forecast map of dust generation centers was improved. Then, the results of the forecast map were validated using the method under the ROC curve.
 
Results and Discussion: This study found that sensitive areas such as the Helmand River bed, Hamoon Lake, Darmian, Nehbandan, eastern parts of South Khorasan Province, Sarakhs, Tabas, Iranshahr, etc. had a high potential for dust generation. According to the input maps extracted from the maximum entropy model, the dust-prone areas fell within the range of sand dunes, whose lands lacked any vegetation. Located in the direction of winds with more than 10 meters per second velocity, the areas are mostly spread in saline lands, barren lands, and dried water bodies, possessing less than 100 mm precipitation rate, low slope, and maximum temperature rate. It was also found that the AUC values were 0.78 and 0.75 ​​in the calibration and validation stages, respectively.
On the other hand, according to the validation of spatial forecasting models and the current literature in the field of ROC curve method analysis, it can be argued that due to its over 70% accuracy, the maximum entropy model can perform well in predicting dust-prone areas. Also, the results of the Jackknife test indicated that wind speed, precipitation, pedology, vegetation, and land use were the most important variables involved in the prediction of dust generation centers, with the model being highly sensitive to such variables.
However, factors such as maximum air temperature, slope, and lithology were found to have exerted a minimal effect on the occurrence of the dust storm in the study area. Moreover, according to the results of analyzing the correlation between the studied factors and the occurrence of the dust storm, the highest density of dust generation was observed in lowland areas where barren lands, salt marshes, sand dunes, and dried beds of water bodies existed. Possessing no vegetation, the areas are also located in the region’s local wind direction with high velocity.
 
Conclusion: Based on the study’s results, it can be argued that the maximum entropy model performs highly efficiently in identifying the potential dust-generation areas, considering the old dust-generating centers as dependent variables to prepare and produce a forecast map of dust-prone areas. Moreover, the model identifies the correlation between independent and dependent variables based on the extent of entropy to minimize the possibility of prediction error. Therefore, the model’s predictions are made with the lowest degree of uncertainty, whose results could be used and relied on for managing and controlling watershed erosion.
 On the other hand, the results suggested that the density and probability of dust storm occurrence varied in different parts of the region and that identifying dust-generation-prone areas was the first step in protecting the soil, controlling erosion, and managing sediment production. Moreover, the maximum entropy model showed an increase in wind speed and surface temperature throughout the study area, with a decrease in precipitation rate exerting a direct influence on the vegetation of the lowlands and plains where sand dunes, barren lands, and dried beds of wetlands are located. Finally, the maximum entropy model and other data mining models are recommended to be used for identifying potential areas of sediment production involved in the occurrence of dust storms to help improve the concentration of relevant executive projects in areas sensitive to wind erosion.

کلیدواژه‌ها [English]

  • Storm Control
  • Potential Dust Sources
  • Environmental Pollution
  1. Ansari, A., 2017. Determination of dust emissions concentration in desert wetlands (Case study: Meighan wetland, Iran). Journal of Biodiversity and Environmental Sciences 10(2), 89-97.
  2. Baddock, M.C., Bryant, R.G., Domínguez Acosta, M., and Gill, Th.E., 2021. Understanding dust sources through remote sensing: making a case for CubeSats. Journal of Arid Environments 104, 104335.
  3. Borrelli, P., Ballabio, C., Panagos, P., and Montanarella, L., 2014. Wind erosion susceptibility of European soils. Geoderma 232, 471–478.
  4. Broomandi, P., Dabir, B., Bonakdarpour, B., and Rashidi, Y., 2017. Identification of the sources of dust storms in the City of Ahvaz by HYSPLIT. Journal of Pollution 3(2), 341-348.
  5. Chiapello, I., 2014. Dust observations and climatology. Mineral Dust 149-177.
  6. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y., and Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1), 43–57.
  7. Geological and Mineral Exploration Organization of Iran. 2017. Preliminary report on physical and chemical characteristics of dust storm. April, 340 p.
  8. Han, Q., Wang, M., Cao, J., Gui, C., Liu, Y., He, X., He, Y., and Liu, Y., 2020. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo. Ecotoxicol Environ Saf 191, 110157.
  9. Heidarian, P., Azhdari, A., Jodaki, M., Darvishi Khatooni, J., and Shahbazi, R., 2017. Identifying interior sources of dust storms using remote sensing, GIS and geology (case study: Khuzestan province). Journal of Geosciences 27(105), 33-64. (In Persion).
  10. Ji, Y., Chen, X., Li, Y., Zhang, W., Shi, Q., Chen, J., Gao, Y., Li, G., Wang, J., Tian, P., and An, T., 2019. The mixing state of mineral dusts with typical anthropogenic pollutants: A mechanism study. Journal of Atmospheric Environment 209, 12-200.
  11. Kimura, R., 2012. Factors contributing to dust storms in source regions producing the yellow-sand phenomena observed in Japan from 1993 to 2002. J. Arid Environ. 80, 40–44.
  12. Kandakji, T., Gill, Th.E., and Lee, J.A., 2020. Identifying and characterizing dust point sources in the southwestern United States using remote sensing and GIS. Journal of Geomorphology 353, 107019.
  13. Lababpour, A., 2020. The response of dust emission sources to climate change: Current and future simulation for southwest of Iran. Journal of Science of the Total Environment 714, 136821.
  14. Middleton, N., Kang, U., 2017. Sand and dust storms: impact mitigation. Journal of Sustainability 9(6), 1053.
  15. Moridnejad, A., Karimi, N., and Ariya, P. A., 2015. Newly desertified regions in Iraq and its surrounding areas: Significant novel sources of global dust particles. Journal of Arid Environments 116, 1-10.
  16. Narayan, K., Khanindra, P., Abhisek, C., Subodh, K., Chowdary, V.M., Singh, C.P., Satiprasad, S., and Samrat, B., 2019. Assessment of foliar dust using Hyperion and Landsat satellite imagery for mine environmental monitoring in an open cast iron ore mining area. Journal of Cleaner Production 218, 993-1006.
  17. Nobakht, M., Shahgedanova, M., and White, K., 2021. New inventory of dust emission sources in central asia and northwestern China derived from MODIS imagery using dust enhancement technique. Journal of Geophysical Research: Atmospheres 126(4), 1-19.
  18. Park, N.W., 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geo environmental data sets. Journal of Environmental Earth Science 73, 937–949.
  19. Phillips, S., Anderson, R., and Schapire, R., 2006. Maximum entropy modelling of species geographic distributions. Journal of Ecological Modelling 190(3), 231-259.
  20. Raygani, B., Kheyrandish, Z., Kermani, F., Mohammdi Miyab, M., and Torabinia, A. (2017). Identification of active dust sources using remote sensing data and air flow simulation (Case study: Alborz province). Journal of Desert Management, 4(8), 15-26. (In Persion).
  21. Richter, D., and Gill, T. (2018). Challenges and opportunities in atmospheric dust emission, chemistry and transport. Bulletin of the American Meteorological Society, 99(7), 115-118.
  22. Salahi, B., and Behrouzi, M. (2020). Detection of dust canons and Physico-chemical analysis of its particles in Dezful area. Journal of Natural Environmental Hazards, 9(23), 187-208. (In Persion).
  23. Stocklin, J., 1968. Structural History and Tectonic of Iran: A Review. American Association of Petroleum Geologists Bulletin 52, 1229-1258.
  24. Tiangang, Y., Siyu, C., Jianping, H., Xiaorui, Z., Yuan, L., Xiaojun, M., and Guolon, Z. (2019). Sensitivity of simulating a dust storm over Central Asia to different dust schemes using the WRF-Chem model. Atmospheric Environment 15(207), 16-29.
  25. Wang, Y.S., Wang, Y.M., Lin, H.H. and Tang, T.I., 2003. Determinants of user acceptance of Internet banking: an empirical study. International journal of service industry management, 14(5), 501-519.
  26. Yassin, M.F., Almutairi, S.K., and Al-Hemoud, A., 2018. Dust storms backward Trajectories' and source identification over Kuwait. Journal of Atmospheric Research 212, 158-171.
  27. Yerramilli, A., Dodla, V.B.R., Challa, V.S., Myles, L., Pendergrass, W.R., Vogel, C.A., Dasari, H.P., Tuluri, F., Baham, J.M., and Hughes, R.L., 2012. An integrated WRF/HYSPLIT modeling approach for the assessment of PM2. 5 source regions over the Mississippi Gulf Coast region. Air Quality. Atmosphere & Health 5(4), 1-12.
  28. Zhuang, S., and Lu, X., 2020. Environmental risk evaluation and source identification of heavy metal(loid)s in agricultural soil of Shangdan Valley. Northwest China. Sustainability 12, 5806.