ارزیابی تغییرات زمانی خشکسالی با استفاده از آزمون من- کندال و شیب سن در استان کرمان طی سال‌های 1990 تا 2018

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه جیرفت

2 دانشگاه تهران

3 دانشگاه یزد

‎10.22052/deej.2023.248210.0

چکیده

بررسی روند تغییرات خشکسالی‌ها به عنوان یکی از پیامدهای ناشی از تغییر اقلیم که محدودیت شدید منابع آب را به دنبال دارد امری ضروری می‌باشد و در صورت وجود تغییرات افزایشی اقدامات لازم در جهت مدیریت منابع آب باید صورت پذیرد.  در پژوهش حاضر روند تغییرات شاخص خشکسالی بارش- تبخیرتعرق استاندارد شده (SPEI) برای ایستگاه های سینوپتیک استان کرمان طی سالهای 1990 تا 2018 ارزیابی گردید. بررسی روند تغییرات سری‌های زمانی SPEI  با استفاده از دو آزمون من- کندال و شیب خط سن انجام شد. نتایج نشان داد از بین ایستگاه‌های مطالعاتی، شهربابک دارای بیشترین فراوانی و بالاترین شدت خشکسالی طی دوره آماری مورد مطالعه بوده است. تغییرات فصلی خشکسالی نشان داد روند صعودی معنی‌داری در تمامی فصول سال در ایستگاه‌های مطالعاتی وجود داشته است. تغییرات سالانه شاخص SPEI نیز روند صعودی خشکسالی در تمامی ایستگاه‌های مطالعاتی طی دوره آماری 2018-1990 را نشان داد. همچنین نتایج نشان داد در بازه­ی زمانی 1996-1990،   شیب خط روند شاخص SPEI مثبت بوده که بیانگر کاهش خشکسالی در استان کرمان طی این بازه زمانی می‌باشد. این درحالیست که شیب روند شاخص SPEI در بازه­های زمانی 2010-1997 و 2018-2011 منفی بوده که حاکی از افزایش شدت خشکسالی در استان کرمان طی سال‌های اخیر می‌باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Drought Temporal Changes using Mann-Kendall test and Sen’s Slope in Kerman Province for the Period 1990 to 2018

نویسندگان [English]

  • Zohre Ebrahimi-Khusfi 1
  • Maryam Mirakbari 2
  • Mohsen Ebrahimi-Khusfi 3
  • Mojtaba Soleimani-Sardoo 1
1
2
3
چکیده [English]

Introduction:
Due to locating most of Iran in arid and semi-arid climates and the consequences of drought, assessing the trend of drought change is very important. An overview of past researches indicates the occurrence of severe and long-term droughts in recent years, which highlights the effects of drought in Iran and other parts of the world. Climate change due to global warming, severe and prolonged droughts and consequently water scarcity is one of the major challenges, especially in arid and semi-arid regions. Therefore, it is necessary to study the trend of drought change as one of the consequences of climate change, which leads to severe limitation of water resources, so that in the presence of increasing drought changes, necessary measures will be taken to manage water resources. Therefore, in this study, the trend of meteorological drought changes in Kerman province is evaluated by SPEI index. Kerman province, like other arid and semi-arid regions of IRAN, is no exception to the phenomenon of drought and so far no study has been conducted to study the fluctuations of meteorological drought by existing indicators (SPI, SPEI, RDI, PDSI) in the whole province.
Materials and methods
The study area of this paper is Kerman province which located in the southeast of Iran. The climatology data, including mean monthly precipitation and mean monthly temperature, of 7 synoptic stations were used to conduct this study for the period of 1990-2018. These data were obtained from Meteorological Organisation of Kerman.
To conduct this study, first, Standardized Precipitation Evapotranspiration Index (SPEI) was calculated to extract drought periods in three time scales i.e., 3, 9 and 12 month. SPEI estimates dry and wet periods based on precipitation and temperature data. In order to evaluate the trend of time series changes, the first step is to examine the existence of autocorrelation between time series. For this purpose, the Pre-Whitening method (Von Storch, 1999) was used to determine the presence or absence of autocorrelation. After confirming the absence of autocorrelation between data, Mann-Kendall test was applied to SPEI values. In the next step, the Sen’s slope test for the time series is calculated and the significance of the slope at different levels of confidence is obtained. In other words, the assessment of upward and downward trend of SPEI series was evaluated using two both Mann-Kendall and Sen' Slope trend tests
Results and discussion
Considering the impact of climate change on precipitation and temperature in Iran and also the significant impact of precipitation and its fluctuations on agricultural production, it is important to assess the fluctuations of phenomena such as drought that are directly affected by precipitation and temperature. Therefore, in this study, drought changes were assessed by SPEI3, SPEI9 and SPEI12 indices in Kerman province as one of the regions with arid and semi-arid climate. The results of SPEI time series analysis showed that the highest number of drought events occurred in Shahrbabak station with a frequency of 80% during the statistical period 1990 to 2018. Also, the most severe drought occurred at this station in 2016, according to the annual SPEI average. The average annual SPEI values ​​showed that the study area experienced the most severe drought events between 1998 and 2010. The results of evaluating the monthly changes of drought by Mann-Kendall and Sen’s slope method showed that in almost all months of the year except May, an increasing and decreasing trend is observed, so that in January (increasing and decreasing trend) and October (increasing trend) there are the most significant drought changes. Seasonal changes of drought showed that drought changes in spring, autumn and winter have an upward slope that in some stations this increase is significant at the level of 99 and 95%, while the summer season during the study period was faced with increasing and decreasing changes. The increasing trend of drought in spring, summer and autumn has been reported by Malekinejad et al. (2012) in Tehran province. In general, the evaluation of annual changes in drought in the study stations showed that the whole area during the statistical period (1990-2018) had an upward trend. In other words, the severity of drought is increasing in Kerman province, which is one of the main reasons for climate change and consequently increase in temperature (Mirakbari and Ebrahimi, 2021; Mesbahzadeh et al., 2020). Also, the increasing trend of drought in Iran has been reported by several researchers, including Ghorbani et al. (2020), Mozaffari et al. (2021), Amani et al. (2021). The study of changes in drought periods showed that Kerman province has experienced three periods with different trend slopes during the statistical period under study. The first period (1996-1990) has a decreasing slope, the second period (1997-2010) and the third period (2018-2011) have an increasing slope, which is relatively consistent with changes in precipitation and average temperature throughout Kerman province. The results of this part of the research are consistent with the results of Ebrahimi et al. (2021), which reported the existence of three periods of drought changes with different trend slopes based on Domarten drought index in the whole country during the statistical period of 2011-2018. In general, the results of this study showed that drought in Kerman province is increasing, which requires more attention of experts and planners of water resources for proper management of water shortages caused by severe droughts.
 

کلیدواژه‌ها [English]

  • Drought
  • SPEI
  • Mann-Kendall
  • Sen's slope
  • Kerman province
  1. Achite, M., Krakauer, N., Walega, A. and Caloiero, T., 2021. Spatial and temporal analysis of dry and wet spells in the Wadi Cheliff basin, Algeria. Atmosphere 12(6): 798.
  2. Amani, M., Borna, R. and Zouhorian, M., 2021. Spatial analysis of drought trend and calculation of reliable rainfall in Khuzestan province. Geography (Regional Planning), 12(1), pp.109-97.
  3. Byun, H. and Wilhite, D., 1999. Objective quantification of drought severity and duration. J Clim 12:2747–2756.
  4. Ebrahimi-Khusfi, Z., Mirakbari, M. and Soleimani-Sardo, M., 2021. Aridity Index Variations and Dust Events in Iran from 1990 to 2018, Annals of the American Association of Geographer. 1-18.
  5. Ebrahimi Khusfi, Z., and Mirakbari, M. (2020). Assessment the Impact of Climate Change on the Drought of Jazmourian Wetland Using CanESM2 Model', Desert Management, 7(14), pp. 149-166.
  6. GhorbaniAghdam, M., Dinpazhoh, Y., FakheriFard, A. and Darbandi, S., 2012. Regionalization of Urmia Lake Basin from the View of Drought Using Factor Analysis. Water and Soil. 26 (5). 1268-1276.
  7. Gumus, V., Simsek, O., Avsaroglu, Y. and Agun, B. 2021. Spatio‐temporal trend analysis of drought in the GAP Region, Turkey. Natural Hazard. 109: 1759-1776.
  8. Karami, E., 2017. Climate Change, Drought and Poverty in Iran: A Perspective of Future. 1 (1): Agriculture Science and Natural Resources 63-80.
  9. Kendall M., 1975. Rank correlation methods (4th edn.) charles griffin. San Francisco, CA, 8.
  10. Kousari, M., Ekhtesasi, M. and Malekinezhad, H., 2017. Investigation of long term drought trend in semi-arid, arid and hyper-arid regions of the world. Desert Management. 8: 36-53.
  11. Malekinezhad, H., SoleymaniMotlagh, M., Jaydari, A. and ShaterAbshouri, S., 2012. Analysis of rainfall and drought changes using Mann-Kendall and Sen tests in Tehran province. Nivar. 80(81): 43-55.
  12. Mann HB., 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society: 245-259.
  13. Mazidi, A., Enayatpour, M. and Hosseini, SS. 2021. Climate determination of Kerman province using ambrothermic curve methods, Domarten drought coefficient, Amberjeh climate view.Geography and Human Relationships. 4(2): 35-43.
  14. McKee, TB. and Doesken NJ Kleist J., 1993. The relationship of drought frequency and duration to time scales. Proceedings of the Eighth Conference on Applied Climatology, Boston, MA: American Meteorological Society: 179–184
  15. Mesbahzadeh, T., Mirakbari, M., Mohseni Saravi, M., Soleimani Sardoo, F. and Miglietta, MM., 2020. Meteorological drought analysis using copula theory and drought indicators under climate change scenarios (RCP). Meteorological Applications https://doi.org/10.1002/met.1856.
  16. Mirakbari, M. and Ebrahimi, Z., 2021. Evaluation of the climate change effects on the future drought characteristics of Iranian wetlands. Arabian Journal of Geoscience. 14(21): 1-24.
  17. Mishra, AK., Desai, VR. and, VP., 2007. "Drought Forecasting Using a Hybrid Stochastic and Neural Network Model." Journal of Hydrologic Engineering 12, no. 6: 626-38.
  18. Mozafari, E., Bazrafshan, O. and Moradi, N., 2021. Spatio-Temporal Variability of Characteristics of Meteorological Drought in Iran under Climate Change Scenarios. Desert Management. 16: 153-168.
  19. Palmer, WC., 1965. Meteorological drought Weather Bureau Paper 45, US Dept. of Commerce, Washington D.C.
  20. Roodari, A., Hassanpoor, F., Yaghoubzadeh, M. and Delavar, M., 2019. Investigation of Relation between Meteorological and Hydrological Drought in Sistan Plain. Environmental Science and Technology. 21 (85). 33-44.
  21. Sen, PK., 1968. Asymptotically efficient tests by the method of n rankings. Journal of the Royal Statistical, B, 30.
  22. Srivastava, A. and Saran, S., 2017. Comprehensive study on AOD trends over the Indian subcontinent: a statistical approach. International Journal of Remote Sensing, 38(18): 5127-5149.
  23. Theil, H., 1950. A rank-invariant method of linear and polynomial regression analysis, Part 3. Proc Koninalijke Nederlandse Akad Weinenschatpen A 53: 1397-1412.
  24. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94.
  25. Tsakiris, G. and Vangelis, HJEW., 2005. Establishing a Drought Index Incorporating Evapotranspiration. European Water 9, 10: 3-1
  26. Ullah, E., Ma, X., Salmeen, F., Syed, S., Omer, A., Asmeron, B., Liu, M. and Arshad, M. 2022. Observed changes in seasonal drought characteristics and their possible potential drivers over Pakistan. Climatology. 42(3): 1576-1596.
  27. Vicente-Serrano, SM., Sergio, M., Santiago, Beguería. and López-Moreno., j., 2010. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of climate 23 (7): 1696-718.
  28. Von Storch H., 1999. Misuses of statistical analysis in climate research. In: Analysis of climate variability. Springer, pp 11-26.
  29. Zhai, J., Mondal, S., Fischer, Th., Wang, Y., Su, B., Huang, J., Tao, H., Wang, G., Ullah, W. and Uddin, MJ. 2020. Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research. 246: 105111.
  30. Zhu, X., Liu, T., Xu, K. and Chen, C., 2022 The impact of high temperature and drought stress on the yield of major staple crops in northern China. Environmental Management. 314: 115092.