ارزیابی مدل‌های تجربی و هوشمند در برآورد تبخیروتعرق مرجع: مطالعه موردی الیگودرز

نوع مقاله : مقاله پژوهشی

نویسندگان

تحقیقات کشاورزی

‎10.22052/deej.2023.248181.0

چکیده

فائوپنمن‌مانتیث به عنوان روش مرجع، برای برآورد تبخیروتعرق‌مرجع مورداستفاده قرارمی‌گیرد. اما این روش نیازمند اطلاعات ورودی زیادی می‌باشد که گاهاً دسترسی به همه اطلاعات امکان‌پذیر نبوده و این امر انتخاب روش‌های با داده‌های ورودی کم‌تر و دقت مناسب را ضروری می‌سازد. در این پژوهش هفت مدل برآورد تبخیروتعرق مرجع و مدل برنامه‌ریزی بیان ژن (GEP) نسبت به فائوپنمن‌مانتیث ارزیابی شدند. بدین منظور از اطلاعات روزانه بیشینه و کمینه‌درجه‌حرارت، بیشینه و کمینه‌رطوبت‌نسبی، سرعت‌باد و ساعات‌آفتابی 35 ساله (2017-1983) ایستگاه سینوپتیک الیگودرز استفاده‌گردید. 70 درصد داده‌ها برای آموزش و 30 درصد داده‌ها برای آزمون مدل‌ ‌به‌کارگرفته‌شد. نتایج نشان داد مدل‌های کیمبرلی‌پنمن و تشعشی‌فائو دارای دقت بیشتری نسبت به سایر مدل‌های تجربی هستند. تحلیل ضرایب مدل رگرسیون چندمتغیره حاکی از بیشترین تأثیر بیشینه‌درجه‌حرارت با ضریب 58/0 بر تبخیروتعرق‌مرجع بود. در GEP، الگوی شماره 2 با عملگرهای پیش-فرض مدل با ‏843/0RMSE= و 932/0R2= در مرحله آموزش و 76/0RMSE= و 941/0R2= در مرحله آزمون عملکرد بهتری را داشته‌است. مقایسه مدل‌های برآورد تبخیروتعرق مرجع حاکی از برتری مدل GEP نسبت به سایر مدل‌ها بود. نتایج این پژوهش نشان داد که مدل GEP دارای توانایی قابل‌قبولی در تخمین تبخیروتعرق مرجع تحت شرایط آب‌وهوایی الیگودرز بوده و به‌عنوان مدل قابل‌استفاده در این زمینه ‏معرفی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Experimental and intelligent Models in Estimation of Reference Evapotranspiration: Case Study Aligodarz

نویسندگان [English]

  • yaser sabzevari
  • moradali ghanbarpouri
چکیده [English]

Abstract One of the most important components of the water requirement is the reference evapotranspiration (ET0), which is one of the most important components of the hydrological cycle that dependent to climate variables such as: wind speed near ground, air temperature, radiation Solar and relative humidity. Consequently, ET0 values can be estimated and simulated using meteorological models based on physical equations or the empirical relationship of meteorological variables. There are various methods for calculating reference evapotranspiration, each of which has different results depending on the different meteorological assumptions and data they consider. Worldwide, the FAO model is used as a reference method for estimating evapotranspiration. But this model requires a lot of input information such as: max air temperature, min air temperature, max relative humidity, min relative humidity, solar radiation and wind speedy, which sometimes is not possible to access all the information especially in arid and semi-arid regions like Iran and this necessitates the selection of models with less input data and appropriate accuracy. In this study, seven reference evapotranspiration estimation models that require less data including: Kimberley penman, FAO radiation model, Hargreaves Samani, Makkink, belany Kridle FAO 24, Turc and Peristly Teylor, were evaluated than the FAO model. The reference evapotranspiration was then modeled using Gene Expression Programming Model (GEP) and the results were compared with experimental methods. Multivariate regression was used to determine the model input patterns and to investigate the effect of climatic parameters on ET0. Multivariate regression in fact expresses the relationship between several predictor variables with the response variable in question. Such models have assumptions. The assumption that distinguishes multivariate regression from simple regression is that: 1) The number of predictor (independent) variables in the regression should be less than the number of observations. 2) There is a complete linear correlation between predictor and response variables. If the two assumptions are violated, the regression equation cannot be estimated. Gene expression planning is a combination of the GA and GP methods developed by Ferreira in 1999. In this method, linear and simple chromosomes of constant length, similar to the genetic algorithm and branch structures of different sizes and shapes, are combined, similar to the decomposition trees in genetic programming. In short, it can be stated that in this way the genotype and phenotype are separated and the system will be able to enjoy all the evolutionary benefits. Although the phenotype in GEP is similar to the branched structure of GP, the branched structure in GEP, also called tree expression, represents all independent genomes. In summary, it can be briefly stated that in GEP refinement takes place in a linear structure and then expressed as a tree structure, which will result in only the modified genome being transferred to the next generation. It does not need heavy structures to reproduce and mutate. For this purpose, daily maximum and minimum temperature, maximum and minimum relative humidity, Wind Speed and sunlight hours of the 35-year period (1983–2017) were used for the Aligodarz Synoptic Station. 70% of the data were used for training and 30% of the data were used for testing the model. Also, two types of mathematical operators including four-element operations and default model operators were used in the GEP method. The results showed that the Kimberley penman and FAO radiation models are more accurate than the other experimental models. Multivariate regression results showed acceptable modeling accuracy with R2 = 0.95. The analysis of model coefficients showed the highest effect of maximum Temperature with a coefficient of 0.58 on reference evapotranspiration. After that, respectively, wind speed, sunshine hours, minimum temperature, maximum and minimum relative humidity have the most influence on prediction and estimation of evapotranspiration. Therefore, six models for model inputs were determined. In Gene Expression Programming, model 2 with model default operators with RMSE = 0.843 and R2 = 0.932 at training stage and RMSE = 0.76 and R2 = 0.941 Performed better in the test phase. Comparison of the reference evapotranspiration estimation models indicated that the Gene Expression Programming model outperformed the other models. The results of this study showed that the GEP model has acceptable ability to estimate reference evapotranspiration under Aligodarz climatic conditions and introduced it as a usable model in this field.

کلیدواژه‌ها [English]

  • Radiation model
  • Temperature model
  • Radiation-temperature model
  • Regression
  • GEP
  1. Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), p.D05109.
  2. Almorox, J., Quej, V.H. and Martí, P., 2015. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes. Journal of Hydrology, 528, pp.514-522.
  3. Berti, A., Tardivo, G., Chiaudani, A., Rech, F. and Borin, M., 2014. Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agricultural Water Management, 140, pp.20-25.
  4. Blaney, H.F. and Criddle W.D., 1950. Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data; Soil Conservation Service Technical Paper 96; Soil Conservation Service, US Department of Agriculture:Washington, DC, USA.
  5. Djaman KB, Balde A, Sow A, Muller B, Irmak SK, N’Diaye M, Manneh BD, ‎Moukoumbi Y, Futakuchi K, Saito K. Evaluation of sixteen reference‎‏ ‏Evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology ‎Regional Study, 2015; 3: 139-159.‎
  6. Fallah, F. and Tahmasebipour, N. 2016. Meteorological drought analysis of Aligoudarz synoptic station using DIP software. 11th National Seminar on Watershed Management In date 2016-04-19 by Yasouj University,Watershed Management Society of Iran
  7. Ferreira, C., 2001. "Gene Expression Programming: A New Adaptive Algorithm for Solving Problems" Complex Systems, 13 (2), 87-129.
  8. Feyzollahpour, F., Delavar, M. and Hesamiafshar, M. 2017. Evaluation and Analysis of Uncertainty Estimation of Reference Evapotranspiration Using Reference Genetics. Journal of Soil and Water Science, Volume 27, Number 4, 147-135. ‎[Persian]‎
  9. Gholami, V., Derakhshan, Sh. and Darwari, Z. 2012. Investigation of Multivariate Regression and Artificial Neural Network in Simulation of Groundwater Salinity in Mazandaran Province. Journal of Water Research in Agriculture, Volume 26, Number 3, pages 79-100. ‎[Persian]‎
  10. Grismer, M.E., Orang, M., Snyder, R. and Matyac, R., 2002. Pan evaporation to reference evapotranspiration conversion methods. Journal of irrigation and drainage engineering, 128(3), pp.180-184.
  11. Hargreaves, G. H., 1994. Defining and using reference evapotranspiration. Journal of Irrigation and Drainage ‎Engineering, 120(6), 1132-1139..‎
  12. Hojbar, H., Moazed, H. and Shokrikoochak, S. 2017. Simulation of Reference Evapotranspiration using empirical methods and artificial neural network and compare with leisimetere data in Urmia Kherizi station. Journal of Irrigation and Water Engineering, 4(15), 13-25. ‎[Persian]‎
  13. Hosseini, S.M.R., Ganjikhoramdel, N. and Khalatabadifarahani, A.H. 2015. Evaluation and sensitivity analysis of different methods of estimating daily reference evapotranspiration in a cold climate. Journal of Applied Research in Water Sciences, Vol. 1, No. 2, Winter 2015, pp. 29-40. ‎[Persian]‎
  14. Khoshhal, J., Zareabyane, H., Joshani, A.R. and Khazaee, M. 2016. Evaluation of different potential evapotranspiration methods with pan-FAO model in East and Northeast of Iran. Journal of Natural Geography‏, 8(28), 1-16. ‎[Persian]‎
  15. Kisi, O. and Alizamir, M., 2018. Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: Wavelet extreme learning machine vs wavelet neural networks. Agricultural and forest meteorology, 263, pp.41-48.
  16. Laaboudi, A., Mouhouche, B. and Draoui, B., 2012. Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions. International journal of biometeorology, 56(5), pp.831-841.
  17. ‎Ladlani, I., Hauichi, L., Dhemili, L., Heddem, S. and Blouze, KH., Estimation of daily refrence ‎evapotranspiration in the north of Algeria using adaptive neuro-Fuzzy inference system (ANFIS) and multiple ‎linear regression Models: a comparative study. Arabian Journal for Science and Engineering, 2014; 39: 5959-5969.‎DOI 1007/s13369-014-1151-2
  18. Liu, X., Xu, C., Zhong, X., Li, Y., Yuan, X. and Cao, J., 2017. Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement. Agricultural water management, 184, pp.145-155.
  19. Lopes, H.S. and Weinert, W.R., 2004. EGIPSYS: an enhanced gene expression programming approach for symbolic regression problems. International Journal of Applied Mathematics and Computer Science, 14(3), pp.375-384.
  20. Makkink, G.F., 1957. Testing the Penman formula by means of lysimeters. J. Instit. Water Eng., 11, 277–288.
  21. Martí, P., González-Altozano, P., López-Urrea, R., Mancha, L.A. and Shiri, J., 2015. Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agricultural Water Management, 149, pp.81-90.
  22. Niaghi, A.R., Majnooni-Heris, A., Haghi, D.Z. and Mahtabi, G., 2013. Evaluate several potential evapotranspiration methods for regional use in Tabriz, Iran. Journal of Applied Environmental and Biological Sciences, 3(6), pp.31-41.
  23. Pour-Ali Baba, A., Shiri, J., Kisi, O., Fard, A.F., Kim, S. and Amini, R., 2013. Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrology Research, 44(1), pp.131-146.
  24. Raouf, M. and Azizimobser, J. 2017. Evaluation of eighteen Reference Evapotranspiration model in Ardabil climatic conditions. Water and Soil Conservation Journal, Volume 24, Number6. ‎[Persian]‎
  25. Sarmadian, F., Mehrjerdi, R., Asgari, H. and Akbarzadeh, A. 2010. Comparison of Neuro-Fuzzy Neural Network and Multivariate Regression in Predicting Some Soil Properties, Journal of Watershed Research, ‎‎Volume 41, Number 1, pages 211 to 220. ‎[Persian]‎
  26. Sattari, M.H. and Esmailzadeh, B. 2016. Comparison of the results of M5 tree model and genetic programming with FAO-Penman-Monteith method for reference evapotranspiration reference. Journal of Water Resources Engineering, Ninth Year, Winter 2016. ‎[Persian]‎
  27. Shiri, J., Nazemi, A.H., Sadraddini, A.A., Landeras, G., Kisi, O., Fard, A.F. and Marti, P., 2014. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Computers and Electronics in Agriculture, 108, pp.230-241.
  28. Shiri, J., 2017. Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran. Agricultural water management, 188, pp.101-114.
  29. ‎Tabari, H., Grismer, M.E. and Trajkovic, S. 2013. Comparative analysis of 31 reference‏ ‏Evapotranspiration methods under humid conditions. Irrigation Science, 31: 107-117‎‏.‏
  30. Tabari, H., Kisi, O., Ezani, A. and Talaee, PH. 2012. SVM, ANFIS, regression and climate based models for ‎reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. ‎Journal of Hydrology, 444, 78-89.‎
  31. Turc, L., 1961. Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Ann. Agron., 12, 13–49.
  32. ‎Wen, X., Si, J., He, Z., Wu, J., Shao, H. and Yu, H. 2015. Support-vector-machine-based models for modeling ‎daily reference evapotranspiration with limited climatic data in extreme arid regions. Water resources ‎management, 29(9), 3195-3209.‎
  33. ‎Yassin, M.A., Alazba, A.A. and Mattar, MA. 2016. Artificial neural networks versus gene expression ‎programming for estimating reference evapotranspiration in arid climate. Agricultural Water Management, ‎‎163, 110-124.‎