پیش‌بینی تبخیر از تشت با استفاده از مدل‌های محاسبات نرم در اقلیم فراخشک (مطالعۀ موردی: دشت سیستان، سیستان و بلوچستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی، مجتمع آموزش عالی سراوان

2 مرتع‌داری، مجتمع آموزش عالی سراوان

3 گروه منابع طبیعی، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس

10.22052/deej.2021.11.36.43

چکیده

پیش‌بینی بزرگی و الگوی تبخیر به‌ویژه برای پهنه‌هایی با اقلیم خشک، نیمه‌خشک و فراخشک همانند دشت سیستان ضروری است. ازاین‌رو در این پژوهش برای پیش‌بینی تبخیر تشت دشت سیستان از هشت مدل محاسبات نرم استفاده شد. بدین منظور، از پارامترهای متفاوت اقلیمی در دو ایستگاه سینوپتیک زابل و زهک و ایستگاه تبخیرسنجی چاه‌نیمه‌ها در پیکرۀ هشت سناریوی ترکیبی برای ورودی مدل‌ها استفاده شد. به‌منظور ارزیابی مدل‌های مورد استفاده در این پژوهش از معیارهای ارزیابی ضریب تعیین، ریشۀ میانگین مربعات خطا، میانگین خطای مطلق و همچنین نمودار تیلور استفاده شد. یافته‌ها نشان داد که مدل با ورودی فقط دمای کمینۀ ماهانۀ عملکردی همانند مدل با هشت ورودی پارامتر هواشناسی دارد. همچنین یافته‌ها نشان داد که در بین هشت مدل، مدل جنگل تصادفی در پنج سناریو (سناریو 2، 5، 6،7 و 8 با مقادیر R2 به‌ترتیب برابر 97/0، 98/0، 98/0، 97/0 و 98/0) از هشت سناریو به‌عنوان بهترین مدل عمل کرده است. ازاین‌رو مدل جنگل تصادفی و مدل درختی به‌عنوان بهترین مدل محاسبات نرم به‌منظور شبیه‌سازی و برآورد تبخیر تشت دشت سیستان معرفی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting Pan Evaporation in a Hyper-Arid Climate Using Soft Computing Models: A Case Study of Sistan Plain, Sistan-Baluchistan, Iran

نویسندگان [English]

  • Mojtaba Mohammadi 1
  • Masoomeh Forozanfard 2
  • Hamid Gholami 3
1 Department of Desert Management & Control, Faculty of Natural Resource
2 Department of Desert Management & Control, Faculty of Natural Resource
3 Department of Watershed Management Engineering, Faculty of Natural Resources, Hormozgan University, Bandar Abbas
چکیده [English]

Introduction: Considering the fact that evaporation affects the planning and operations of water resources as a key process in the hydrologic cycle, predicting its magnitude and patterns, particularly in arid, semi-arid, and hyper-arid environments such as Sistan plain (in northern Sistan-Baluchistan Province, Iran) is of great importance. On the other hand, as accurate estimation of Pan evaporation is regarded as one of the main aspects of water management in such regions, it is crucially important to accurately simulate the pan evaporation based on the available regional meteorological parameters. Therefore, this study sought to investigate the capabilities of soft computing techniques for estimating monthly evaporation in Sistan plain. The results of the study could be helpful for the management of water resources in the Sistan area, allowing the policymakers to develop future projects of water resource management/development plans for the region based on Evaporation estimations.
 
Materials and Methods: various meteorological parameters, including maximum, minimum, and average temperature rates, relative humidity, wind speed, and precipitation rate were used to predict monthly Evaporation using the consistent and uninterrupted historical time series data (1994–2021) collected from three meteorological stations (Zabol, Zahak, and Chahnimeh).
The main purpose of this study was to assess the performance of a soft computing model in simulate pan evaporation. To this end, nine soft computing models, including Model Tree (MT), Random Forest (RF), Support Vector Machines (SVM), Bayesian Ridge Regression (BRR), Gaussian Process (GP), Extreme Gradient Boosting (XGB), Artificial Neural Network (ANN), and Multivariate Adaptive Regression Splines (MARS) were used to predict evaporation at the meteorological stations selected for this research.
On the other hand, the model’s performance was assessed using statistical measures, including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and Taylor diagram. Moreover, to construct predictive models, the dataset was divided into training (70%) and validation (30%) data. Then, eight combinations of input parameters were selected for Zabol and Zahak sites based on the Pearson correlation coefficient between the individual input parameters and evaporation. Finally, the best input combination and the optimal values for different models were determined using the R programming language.
 
Results: The different input combinations were determined for the two sites independently based on the inclusion of the weather parameters with the highest coefficient Pearson with evaporation. Then, each model was run using various fixed sets of parameters. For the Zabol station, the minimum temperature rate indicated the greatest correlation coefficient with (0.96), followed by average temperature (0.95) and smallest by rainfall (-0.42). It was also found that the outputs of Zabol and Zahak stations were very close and similar to each other, which could partly be attributed to the proximity of the two stations and their same topography and climatic conditions in the Sistan plain.
On the other hand, the results of assessing the models’ performance indicated that in the validation stage, MT (whose R2 = 0.97 and RMSE=57.3) delivered the best performance in Zabol station under Scenario 1, RF (with its R2 and RMSE being 0.98 61.7, respectively) performed the best under Scenario 2, MT with its R2 and RMSE being 0.97 and 61.27, respectively, showed the best performance under Scenario 3, the ANN and MT (whose R2 and RMSE reported as being 0.96 and 59.9, respectively) put in the best performance under Scenario 4 , and RF with R2 = 0.97 and RMSE=59, 59.24, 58.23, and 58.3 delivered the best performance under scenarios 5 to 8, respectively.
Moreover, the results suggested that adding the number of input variables to the models made no difference in their accuracy level. It was also found that out of eight scenarios investigated in this study, the RF model delivered the performance under five scenarios (2, 5, 6, 7, and 8), and that the MT performed well under two scenarios (1 and 3). Therefore, RF and MT could be introduced as the best soft computing models for simulating and estimating the pan evaporation of the Sistan plain.
 
Conclusion: The results showed that with increasing the input of variables to the model, there was not much difference in the accuracy of the models. For example, R2 of scenario 1 with only the minimum monthly temperature input is equal to scenario 8 with eight inputs equal to 0.98 in the validation stage. Therefore, the findings showed that the model with only the minimum monthly temperature input has the same performance as the model with eight inputs The main contribution of this study was introducing a soft computing model to accurately estimate the pan evaporation of the Sistan plain using a meteorological parameter (minimum monthly temperature).
 

کلیدواژه‌ها [English]

  • Prediction
  • Evaporation
  • Soft Computing
  • Hyper-Arid Region
  • Sistan Plain
  1. Bazzi, H., Ebrahimi, H. and Aminnejad, B., 2021. A comprehensive statistical analysis of evaporation rates under climate change in Southern Iran using WEAP (Case study: Chahnimeh Reservoirs of Sistan Plain). Ain Shams Engineering Journal, 12(2), 1339-1352.‏
  2. Daneshfaraz, R. 2016. Sensitivity Analysis of the Effective Parameters upon Daily Evaporation Using Garson Equation and Artificial Neural Network (Case Study:Tabriz city). Geography and Planning, 19(54), 127-142. (Persian)
  3. Daneshkar Arasteh, P., Tajrishi, M., Mirlatifi, M. and Saghafian, B., 2005. Statistical model of free water surface evaporation using the volume balance method in Chahnimeh reservoir,Sistan-Iran. Pajouhesh va Sazandegi. 18 (68): 2-14. (Persian)
  4. Farasat, M., Seyedian, M. and daab, K., 2021. Evaporation Modeling of Free Surface Water Using SVM and LSSVM Models. Irrigation and Water Engineering, 11(3), 272-288. doi: 10.22125/iwe.2021.128205. (Persian)
  5. K. and Tian, J., 2021. Forecasting reference evapotranspiration using data mining and limited climatic data, European Journal of Remote sensing, 54: sup2, 363-371
  6. Ghaderi, A. and yosefian nazer, H., 2020. Prediction of Evaporation Changes in Half Well Reservoirs of Sistan by Using Randomized Simulator Models. Geography and Development Iranian Journal, 18(58), 225-238. doi: 10.22111/gdij.2020.5362. (Persian)
  7. Ghorbani, M.A., Deo, R.C., Yaseen, Z.M., H. Kashani, M. and Mohammadi, B., 2017. Pan
    evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLPFFA) model: case study in North Iran. Theoret. Appl. Climatol. doi: z10.1007/s00704- 017-2244-0.
  8. Gramacy, R.B., 2019. Package ‘monomvn’. Package ‘monomvm’ version 1.9-13. Retrieved from https://cran.r-project.org/web/packages/momomvm/index.html
  9. Helleputte, T. and Gramme, P., 2017. LiblineaR: Linear predictive models based on the LIBLINEAR C/C++ Library. R package version, 2-10
  10. Kamel, A. H., Afan, H. A., Sherif, M., Ahmed, A. N., and El-Shafie, A. 2021. RBFNN versus GRNN modeling approach for sub-surface evaporation rate prediction in arid region. Sustainable Computing: Informatics and Systems, 30, 100514.
  11. Kaya, Y. Z., Zelenakova, M., Üneş, F., Demirci, M., Hlavata, H., and Mesaros, P. 2021. Estimation of daily evapotranspiration in Košice City (Slovakia) using several soft computing techniques. Theoretical and Applied Climatology, 144(1), 287-298.
  12. Karatzoglou, A., Smola, A., Hornik, K. and Karatzoglou, M. A. 2019. Package ‘kernlab’. CRAN R Project.‏
  13. Khalili Naft Chali, A., Khashei Siuki, A. and Shahidi, A. 2017. Compare KNN and M5 decision tree models in anticipation of evaporation and comparison with empirical equations (Case Study of Birjand). Iranian Journal of Irrigation & Drainage, 11(3), 356-366. (Persian)
  14. Khosravi, K., Daggupati, P., Alami, M. T., Awadh, S. M., Ghareb, M. I., Panahi, M. and Yaseen, Z. M., 2019. Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq. Computers and Electronics in Agriculture, 167, 105041.‏
  15. Kisi, O., Heddam, S. and Yaseen, Z.M., 2019. The implementation of univariable schemebased air temperature for solar radiation prediction: New development of dynamic evolving neural-fuzzy inference system model. Appl. Energy 241, 184–195.
  16. Liaw, A. and Wiener, M., 2002. Classification and regression by randomForest. R news, 2(3), 18-22.
  17. Majhi, B., Naidu, D., Mishra, A.P. and Satapathy, S.C., 2019. Improved prediction of daily pan evaporation using Deep-LSTM model. Neural Comput. Appl. https://doi.org/10.
    1007/s00521-019-04127-7
  18. Mattar, Mohamed A., 2018. "Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt", Agricultural Water Management, Elsevier, vol. 198(C), p. 28-38.
  19. Mirhashemi, S., Panahi, M. and Zareei, L., 2020. Evaluation of M5P Algorithm for Estimation of Potential Evapotranspiration, Minimum and Maximum Temperature (Case study: Sari Weather Station). Journal of Meteorology and Atmospheric Science, 2(4), 287-295. (Persian).
  20. Mohammad Ebrahim, M., Mohammadrezapour, O, and Akbarzadeh seghaleh, H., 2017. Evaluating SEBES Model to Estimate Actual Evapotranspiration using ‎MODIS Sensor Data in Regional Scale (Case Study: Sistan Plain)‎. Iranian journal of Ecohydrology, 4(4), 1141-1150. doi: 10.22059/ije.2017.63243. (Persian)
  21. Mohammadi, M., Vagharfard, H., Mahdavi Najafabadi, R., Daneshkar Arasteh, P. and Nazemosadat, M., 2021. Rainfall-runoff Modelling of Coastal Watersheds near Hormuz Strait Using Data Mining. Iranian Journal of Soil and Water Research, 52(2), 313-327. doi: 10.22059/ijswr.2021.309641.668732
  22. Moran, M.S., Rahman, A.F., Washburne, J.C., Goodrich, D.C., Weltz, M.A. and Kustas, W.P., 1996. Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agric. For. Meteorol. https://doi.org/10.1007/s12549-010-0046-9
  23. Nobre, J. and Neves, R. F., 2019. Combining principal component analysis, discrete wavelet transform and XGBoost to trade in the financial markets. Expert Systems with Applications, 125, 181-194.
  24. Panahi, M., Gayen, A., Pourghasemi, H. R., Rezaie, F., and Lee, S. 2020. Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Science of the Total Environment, 741, 139937.‏
  25. Piri, H., 2012. Assesment of Computational Methods of Estimation of Potential Evapotranspiration Using Lysimeter Data (Case Study: Sistan Plain). Irrigation and Water Engineering, 3(1), 50-61. (Persian)
  26. Priestley, C.H.B. and Taylor, R.J., 1972. On the assessment of the surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 100, 81–92.
  27. Qasem, S.N., Samadianfard, S., Kheshtgar, S., Jarhan, S., Kisi, O., Shamshirband, S. and Chau, K.-W., 2019. Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates. Eng
  28. Samadianfard, S. and Panahi, S., 2019. Estimating Daily Reference Evapotranspiration using Data Mining Methods of Support Vector Regression and M5 Model Tree. Journal of Watershed Management Research. 9(18), 157-167. (Persian).
  29. Sanikhani, H., Kisi, O., Maroufpoor, E. and Yaseen, Z.M., 2018. Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios. Theor. Appl. Climatol. 1–14. https://doi.org/10. 1007/s00704-018-2390-z.
  30. Sattari, M. T. and Esmailzadeh, B. (2017). Performance Assessment of M5 Tree Model and Genetic Programming in Tabriz Station Reference Evapotranspiration Modeling. Water Resources Engineering, 9(31), 11-20. (Persian).
  31. Sayyahi, F., Farzin, S., and Karami, H. 2021. Forecasting daily and monthly reference evapotranspiration in the Aidoghmoush basin using multilayer perceptron coupled with water wave optimization. Complexity, 2021.‏
  32. Sepehri, S., Abbasi, F., Zarei, G. and Nakhjavanimoghaddam, M., 2021. Investigation of Artificial Neural Network Based Models and Sensitivity Analysis for Reference Evapotranspiration Estimating. Iranian Journal of Irrigation & Drainage, 14(6), 2089-2099. (Persian)
  33. Sharafati, A., Khosravi, K., Khosravinia, P., Ahmed, K., Salman, S. A., Yaseen, Z. M. and Shahid, S., 2019. The potential of novel data mining models for global solar radiation prediction. International Journal of Environmental Science and Technology, 16(11), 7147-7164.‏
  34. Shiri, J., Zounemat‐Kermani, M., Kisi, O., and Mohsenzadeh Karimi, S. 2020. Comprehensive assessment of 12 soft computing approaches for modelling reference evapotranspiration in humid locations. Meteorological Applications, 27(1), e1841.
  35. Siasar, H. and Honar, T., 2020. Comparison of Performance of GLM, RF and DL Models in Estimation of Reference Evapotranspiration in Zabol Synoptic Station. jwmr. 11 (22): 210-219. (Persian)
  36. Stanhill, G., 2002. Is the class a evaporation pan still the most practical and accurate
    meteorological method for determining irrigation water requirements? Agric. For.Meteorol.https://doi.org/10.1016/S0168-1923 (02)00132-6.
  37.  
  38. Taylor, K. E., 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192.
  39. Zahiri, J. and Nezaratian, H., 2020. Estimation of transverse mixing coefficient in streams using M5, MARS, GA, and PSO approaches. Environmental Science and Pollution Research, 1-14

Zema, D. A., Lucas-Borja, M. E., Fotia, L., Rosaci, D., Sarnè, G. M. and Zimbone, S. M., 2020. Predicting the hydrological response of a forest after wildfire and soil treatments using an Artificial Neural Network. Compu