ارائۀ ساده‌ترین نسبت‌های طیفی به‌منظور تشخیص برخی خصوصیات شیمیایی خاک در مناطق خشک با استفاده از تکنیک دورسنجی (مطالعۀ موردی: کویر درۀ انجیر بافق)

نویسندگان

1 دانشگاه جیرفت

2 دانشگاه اردکان

10.22052/deej.2018.7.19.59

چکیده

استفاده از تکنیک‌های مختلف پردازش تصاویر ماهواره‌ای، به‌ویژه نسبت‌گیری‌های طیفی، یکی از متداول‌ترین روش‌های بارزسازی پدیده‌های سطح زمین است. هدف از تحقیق حاضر، معرفی مناسب‌ترین نسبت‌های طیفی تهیه‌شده با استفاده از داده‌های سنجندۀ ASTER جهت تفکیک خاک‌های شور، آهکی، قلیایی و گچی در گسترۀ فضایی کویر درۀ انجیر بافق در استان یزد است. بدین منظور پس از انجام تصحیحات هندسی و رادیومتریک، 56 نسبت طیفی ساخته شد. سپس 42 نمونه از سطح خاک برداشت و برخی از خصوصیات شیمیایی آن‌ها اندازه‌گیری شد. پس از تلاقی لایۀ نقطه‌ای تهیه‌شده از محل پروفیل‌ها با لایۀ نسبت‌های طیفی، ارزش بازتاب طیفی نقاط استخراج گردید. سپس اقدام به برقراری روابط رگرسیونی بین 28 نمونۀ آموزشی با مقادیر بازتاب طیفی گردید. در نهایت، دقت مدل‌ها بر اساس ضریب تبیین حاصل از برازش خط بین مقادیر مشاهداتی و تخمینی نقاط تست (14 نمونه) مورد ارزیابی قرار گرفت. نتایج نشان داد که نسبت باندهای 8 به 6 و 8 به 5 برای بارزسازی خاک‌های شور و قلیایی و نسبت باندهای 11 به 12 و 9 به 8 برای بارزسازی خاک‌های آهکی مناسب‌اند. لذا استفاده از داده‌های سنجندۀ استر می‌تواند کارایی قابل قبولی در تشخیص ویژگی‌های شیمیایی خاک در مناطق خشک داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Introduction of the simplest spectral ratios in order to detect some chemical properties of soil in arid regions using remote sensing technique (Case study: Dareh Anjir Kavir)

نویسندگان [English]

  • Zohre Ebrahimi khusfi 1
  • MohammadJavad Ghanei bafghi 2
1
2
چکیده [English]

Introduction Understanding the spectral reflectance of different soils and other surface elements forms the basis for analyzing the process of interpreting remote sensing data. Spectral properties of the various phenomena of the Earth's surface are not constant and are changing, based on the complex time and space conditions. Determination of soil chemical properties using remote sensing techniques mainly affects their spectral reflectance, which is itself influenced by the amount and type of salts in the soil, the amount of moisture, the color and roughness of the soil surface. The use of various satellite image processing techniques, especially spectral ratios, is one of the most common methods for detecting the phenomena of the earth's surface. The purpose of this study is introduce the simplest and most suitable spectral ratios prepared using ASTER sensor data for the enhancement of saline, TNV, alkali and gypsiferous soils in the spatial range of the Dareh Anjir Kavir in Yazd province. Mterials and methods To determine the salinity, alkalinity, gypsum and TNV values of soils, in the spring of 2007 according to the time of the image, by placing a systematic random sampling grid on the image of the area, the location of 42 sampling points was determined and sampled. Soil samples were analyzed after the transport to the laboratory and the values of mentioned parameters were determined. The geometric correction of the ASTER images was carried out using the image to image method. The FLAASH algorithm was used in ENVI4.7 software to obtain ground reflection and atmospheric correction of images after converting the digital value recorded to radians. Then, 6 spectral ratios in the near visible and infrared spectral range, 30 spectral ratios in the middle infrared range and 20 spectral ratios were produced in the thermal infrared range. A point map prepared from the location of the profiles was crossed with all the information layers obtained from the spectral ratios and the value of the reflection of each pixel was extracted. By stepwise multi-variable regression, correlation coefficients and models related to each component were calculated. The extracted models were validated based on the higher values of the corrected explanatory factor and F factor as well as lower standard error. By fitting a straight line between observational and estimated values at the test points, the resultant coefficient was considered as the accuracy of the selected model for the study area. Results The initial results obtained from the establishment of regression relations between salinity, alkalinity, gypsum and TNV components with spectral ratios calculated based on the different band ratios showed that between three components of salinity, alkalinity and gypsum with spectral ratios has been established only one statistically significant relationship. But there are three significant relationship between the TNV component with band ratios that due to the existence of a significant correlation between the band ratios introduced in model number (3), we can not be cited statistically to the application of this model in the identification of TNV soils in the study area. Also, the results showed that the band ratios (b8/b6) and (b8/b5) can be used for enhancement of saline and alkaline soils with relatively high precision and band ratios (b11/b12) and (b9 / b8) in order to characterize the calcareous soils of the study area. Also, the results indicated that the only optimum spectral ratio for separating of gypsum soils from other soils is the band ratio is (b11 /b 13). The correlation coefficient between observational and estimated values at the test points (14 samples) for the mentioned components was relatively good and was estimated to be 0.66, 0.55 and 0.47, respectively. Also, the results indicated that the only optimal band ratio for separating of gypsum soils from other soils is (b11 to b13). Discussion and Conclusion The importance of a band in a region and its inappropriateness in another region is due to the varying degrees of salinity, alkalinity and humidity or different amounts of cations and anions, as well as different climatic, geographic and geological conditions which has led to a difference in the spectral reflectance of phenomena. Since, salinity, TNV and alkalinity models have been able to justify 66%, 55% and 47% of salinity, TNV and alkalinity changes in the study area with acceptable accuracy, By completing and expanding the research, can be done soil zoning in terms of the characteristics studied without the need for sampling. This technology, while providing more precision, can minimize sampling costs. Of course, considering other factors affecting the spectral reflection of different soils and the use of satellite data of other sensors that have a higher spatial resolution than ASTER sensor, or combining them with the data of the ASTER, can produce more precise models. Therefore, the use of ASTER sensor data can have acceptable performance in detecting the chemical properties of soil in arid areas.

کلیدواژه‌ها [English]

  • Aster
  • Enhancement
  • Remote Sensing
  • Dareh-anjir
  • Band Ratio
1. Alavipanah, S.K. 2015. Application of Remote Sensing in Earth Sciences (Soil Science), Fifth Edition, Tehran University Press, 492p. 2. Allbed, A., Kumar, L., and Sinha, P. (2014). Mapping and modelling spatial variation in soil salinity in the Al Hassa Oasis based on remote sensing indicators and regression techniques. Remote Sensing, 6(2), 1137-1157. 3. Asfaw, E., Suryabhagavan, K. V., Argaw, M. 2016. Soil salinity modeling and mapping using remote sensing and GIS: the case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences. 4. Askari, M., Ghasemi, A., Cheragh, S., Nazemoraia, B., Askari, J. 2004. Application of fuzzy logic in exploration of carbonate lead and zinc deposits using satellite data processing in Isfahan province. Iran Mining Engineering Conference. 5. Bai, L., Wang, C., Zang, S., Zhang, Y., Hao, Q., Wu, Y. 2016. Remote sensing of soil alkalinity and salinity in the Wuyu’er-Shuangyang River Basin, Northeast China. Remote Sensing, 8(2), 163. 6. Bannari, A., El-Battay, A., Bannari, R., and Rhinane, H. 2018. Sentinel-MSI VNIR and SWIR Bands Sensitivity Analysis for Soil Salinity Discrimination in an Arid Landscape. Remote Sensing, 10(6). 7. Ebrahimi Khusfi, Z., Fallah Shamsi, S.R., Kompani-Zare, M., Ebrahimi Khusfi, M., Ekhtesasi, M.R., Hosseini, S.Z. 2010. Estimation of soil Salinity components using radiance and reflectance transformations of ETM + and ASTER imagery; a case study: Abarkooh, Yazd. Iranian Remote Sensing and GIS, 2(1), 23-36 8. Ekercin, S. and C. Ormeci. (2008). “Estimating Soil Salinity Using Satellite Remote Sensing Data and Real-Time Field Sampling.” Environmental Engineering Science. 25(7):981-988. 9. Elhaddad, A., and Garcia, L. (2006). Detecting soil salinity levels in agricultural lands using satellite imagery. In Proceedings of the American Society for Photogrammetry and Remote Sensing Annual Conference. 10. Garcia, L. and Elhaddad E. A., 2005. Estimating soil salinity using remote sensing data, proceedings for 2005 central plains Irrigation conference, stersing, Colorado,Feb 16-17,pp 1-10. 11. Fallah Shamsi, S.R., Ebrahimi, Z., Ekhtesasi, M.R., Kompani-Zare, M. 2017. Segmentation of Playa Geomorphological Facies in Desert Regions, Using Integrated Remote Sensing and Statistical Modeling of Soil Properties. Journal of Remote Sensing Technology 5 (1), 1-9. 12. Gorji, T., Sertel, E., & Tanik, A. (2017). Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecological indicators, 74, 384-391 13. Mahmoudi, F., Jafari, R., Karimzadeh, H.R., Ramezani, N. 2015. A Study on Spatial Distribution of Soil Properties in Varzaneh Region of Isfahan by Using Image Processing Methods 29 (4), 1004-1017. 14. Najafi, E., Yousofi, M.H., Iliyaei, E. 2015. Exploration of in situ mineral resources using Landsat 8 thermal bands (Case study: Baghak Kashan mine), The 5th International Conference on Modern Approaches to Energy Conservation, Tehran, Iran. 15. Nield, S. J., J. L., Boettinger & R.D. Ramsey, 2007, Digitally Mapping Gypsic and Natric Soil Areas Using Landsat ETM Data, Soil Science Society of American Journal, 71: 245-252. 16. Nohegar, A., Zare, G.R. 2012. Extraction of Soil Salinity Areas in Arid and Semi-arid Areas Using Remote Sensing Data (Case Study: Darab City). Geography and Environmental Hazards 1(1), 49-64. 17. Poormohamadi, S., Ekhtesasi, M.R., Rahimiyan, M.H. 2015. Identification and separation of calcareous deposits from non-calcareous formations with the use of the combination of remote sensing sciences and lithology specification (Case study: Bahadoran region in Yazd province). Engineering Geology Journal 9 (4), 3113-3129. 18. Rahmati, M., & Hamzehpour, N. (2017). Quantitative remote sensing of soil electrical conductivity using ETM+ and ground measured data. International journal of remote sensing, 38(1), 123-140. 19. Rezaei, A., Soltani, A. 1998. Introduction to Applied Regression Analysis, Isfahan University of Technology Press, 294 pages. 20. Zewdu, S., Suryabhagavan, K.V. and Balakrishnan, M. 2016. Land-use/land-cover dynamics in Sego Irrigation Farm, southern Ethiopia: A comparison of temporal soil salinization using geospatial tools. Journal of the Saudi Society of Agricultural Sciences, 15(1), 91 -97. 21. Zobeiri, M., Majd, A.L. 2013. Introduction to remote sensing technology and its application in natural resources, Tenth Edition, Tehran University Press, 318p