- Adamczyk, B., Heinonsalo, J., & Simon, J. (2020). Mechanisms of carbon sequestration in highly organic ecosystems – importance of chemical ecology. ChemistryOpen, 9(4), 464–469. https://doi.org/10.1002/open.202000015
- Ahmadian, M., Pakparvar, M., & Ashourloo, D. (2010). Evaluation of soil salinity changes using digital processing of Landsat satellite data in the plain (Hamedan Province). Journal of Soil Research (Soil and Water Sciences), 24(2), 179–191. (In Persian).
- Amundson, R., & Biardeau, L. (2018). Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proceedings of the National Academy of Sciences, 115(46), 11652–11656. https://doi.org/10.1073/pnas.1815901115
- Béguin, P. (1990). Molecular biology of cellulose degradation. Annual Review of Microbiology, 44, 219–248. https://doi.org/10.1146/annurev.mi.44.100190.001251
- Bernoux, M., Carvalho, M. C. S., Volkoff, B., & Cerri, C. C. (2002). Brazil’s soil carbon stocks. Soil Science Society of America Journal, 66(3), 888–896. https://doi.org/10.2136/sssaj2002.8880
- Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of Soil Analysis. Part I. Physical and Mineralogical Methods (pp. 363–376). Madison, WI: American Society of Agronomy.
- Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x
- Brahim, N., Blavet, D., Gallali, T., & Bernoux, M. (2011). Application of structural equation modeling for assessing relationships between organic carbon and soil properties in a semiarid Mediterranean region. International Journal of Environmental Science and Technology, 8(2), 305–320. https://doi.org/10.1007/BF03326218
- Cannell, M. G. R. (2003). Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass and Bioenergy, 24(2), 97–116. https://doi.org/10.1016/S0961-9534(02)00103-4
10.Ćwieląg-Piasecka, I., Medyńska-Juraszek, A., Winiewska, K., Adamczuk, A., & Słowik, T. (2023). Soil organic matter composition and pH as factors affecting retention of carbaryl, carbofuran and metolachlor in soil. Molecules, 28(14): 5552. https://doi.org/10.3390/molecules28145552
- Dias, T., Oakley, S., Alarcon-Gutierrez, E., Ziarelli, F., Trindade, H., Martins-Loução, M. A., Sheppard, L., Ostle, N., & Cruz, C. (2013). N-driven changes in a plant community affect leaf-litter traits and may delay organic matter decomposition in a Mediterranean maquis. Soil Biology and Biochemistry, 58, 163–171. https://doi.org/10.1016/j.soilbio.2012.10.027
- Doro, K. O., Stoikopoulos, N. P., Bank, C. G., & Ferris, F. G. (2022). Self-potential time series reveal emergent behavior in soil organic matter dynamics. Scientific Reports, 12(1), 13531. https://doi.org/10.1038/s41598-022-17914-5
- Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of Soil Analysis. Part I. Physical and Mineralogical Methods (pp. 383–411). Madison, WI: American Society of Agronomy.
- GhasemiNejad Raeini, M., & Sadeghi, H. (2017). The evaluation of carbon sequestration at plant’s organs and soil characteristics in understory of Zygophyllum atriplicoides and Gymnocarpus decander (Case study: Saleh-Abad, Hormozgan). Iranian Journal of Rangeland and Desert Research, 24(4), 699–710. (In Persian).
- Gilmullina, A., Rumpel, C., Klumpp, K., & Chabbi, A. (2021). Do grassland management practices affect soil lignin chemistry by changing the composition of plant-derived organic matter input? Plant and Soil, 469(1), 443–455. https://doi.org/10.1007/s11104-021-05156-9
- Huang, W., Hammel, K. E., Hao, J., Thompson, A., Timokhin, V. I., & Hall, S. J. (2019). Enrichment of lignin-derived carbon in mineral-associated soil organic matter. Environmental Science & Technology, 53(13), 7522–7531. https://doi.org/10.1021/acs.est.9b01724
- Huang, Q., Wang, B., Shen, J., Xu, F., Li, N., Jia, P., Jia, Y., An, S., Amoah, I. D., & Huang, Y. (2024). Shifts in C-degradation genes and microbial metabolic activity with vegetation types affected the surface soil organic carbon pool. Soil Biology and Biochemistry, 192, 109371. https://doi.org/10.1016/j.soilbio.2024.109371
- Hui, D., Deng, Q., Tian, H., & Luo, Y. (2015). Climate change and carbon sequestration in forest ecosystems. In Handbook of Climate Change Mitigation and Adaptation (pp. 555–594). Springer. https://doi.org/10.1007/978-3-319-14409-2_13
- Khayamim, F., & Khademi, H. (2015). Spatial distribution of organic matter in surface soils in three climates of Isfahan province. Journal of Soil Research (Soil and Water Sciences), 29(1), 27–38. (In Persian).
- Knorr, W., Prentice, I. C., House, J. I., & Holland, E. A. (2005). Long-term sensitivity of soil carbon turnover to warming. Nature, 433(7023), 298–301. https://doi.org/10.1038/nature03226
- Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627. https://doi.org/10.1126/science.1097396
- Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60–68. https://doi.org/10.1038/nature16069
- Li, L. B., Wang, X. D., Zhang, P., Zhu, Y. Q., Ren, M. Q., & Cai, D. W. (2020). Dynamics of organic matter of soil profiles with different vegetation conditions from the Chinese Loess Plateau: δ13C and δ15N approaches. In IOP Conference Series: Earth and Environmental Science (Vol. 570, No. 2, p. 022008). IOP Publishing. https://doi.org/10.1088/1755-1315/570/2/022008
- Mansouri, A., Karimi, A. R., Parvizi, Y., & Emami, H. (2015). Studying the effect of temperature and precipitation on soil organic carbon in part of the rangelands of Kermanshah province. Proceedings of the Second National Conference on Sustainable Agriculture and Natural Resources, Tehran, Iran: Mehr Arvand Higher Education Institute, Environmentalists Extension Group and Iranian Nature Protection Association. (In Persian).
- Merriman, L. S., Moore, T. L. C., Wang, J. W., Osmond, D. L., Al-Rubaei, A. M., Smolek, A. P., & Hunt, W. F. (2017). Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones. Science of the Total Environment, 583, 133–141. https://doi.org/10.1016/j.scitotenv.2017.01.040
- Norderhaug, A., Clemmensen, K. E., Kardol, P., & Thorhallsdottir, A. G. (2023). Carbon sequestration potential and the multiple functions of Nordic grasslands. Climatic Change, 176, 55. https://doi.org/10.1007/s10584-023-03537-w
- Oji, A., Landi, A., & Hojjati, S. (2018). Carbon sequestration and estimation of its economic value in a part of protected and grazed rangelands of Khuzestan province. Water and Soil, 32(2): 375-386. https://doi.org/20.1001.1.20084757.1397.32.2.11.7. (In Persian)
- Paustian, K., Levine, E., Post, W. M., & Ryzhova, I. M. (1997). The use of models to integrate information and understanding of soil C at the regional scale. Geoderma, 79(1–4), 227–260. https://doi.org/10.1016/S0016-7061(97)00043-8
- Piccolo, A. (1996). Humus and soil conservation. In Humic substances in terrestrial ecosystems (pp. 225–264). Elsevier.
- Raudina, T. V., Smirnov, S. V., & Istigechev, G. I. (2023). Photochemical transformation of dissolved organic matter and behavior of metals in the waters of the southern taiga bog complex, Western Siberia. *Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 334(9), 182–193. https://doi.org/10.18799/24131830/2023/9/4115
- Razavi, S. A., Kamkar, B., & Sadeghipour, H. R. (2015). Decomposition of five crop residues using four species of soil and woody fungi. Journal of Soil Management and Sustainable Production, 4(4), 331–346. (In Persian).
- Saiz, G., Bird, M., Wurster, C., Quesada, C. A., Ascough, P., Domingues, T., Schrodt, F., Schwarz, M., Feldpausch, T. R., Veenendaal, E., & Djagbletey, G. (2015). The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems. Biogeosciences, 12(16), 5041–5059. https://doi.org/10.5194/bg-12-5041-2015
- Serk, H., Nilsson, M. B., Figueira, J., Krüger, J. P., Leifeld, J., Alewell, C., & Schleucher, J. (2022). Organochemical characterization of peat reveals decomposition of specific hemicellulose structures as the main cause of organic matter loss in the acrotelm. Environmental Science & Technology, 56(23), 17410–17419. https://doi.org/10.1021/acs.est.2c03513
- Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386
- Silva, L. J. R., Souza, T., Laurindo, L. K., Nascimento, G. S., Lucena, E. O., & Freitas, H. (2022). Aboveground biomass, carbon sequestration, and yield of Pyrus pyrifolia under the management of organic residues in the subtropical ecosystem of Southern Brazil. Agronomy, 12(2), 231. https://doi.org/10.3390/agronomy12020231
- Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. https://doi.org/10.1023/A:1016125726789
- Srinivasarao, Ch., Venkateswarlu, B., Lal, R., Singh, A. K., Kundu, S., Vittal, D. G., Balaguravaiah, M., Vijaya Sh., B., Ravindra, Ch., Prasadbabu, T., & Yellamanda, R. (2012). Soil carbon sequestration and agronomic productivity of an Alfisol for a groundnut-based system in a semiarid environment in southern India. European Journal of Agronomy, 43, 40–48. https://doi.org/10.1016/j.eja.2012.05.001
- Sokol, N. W., & Bradford, M. A. (2019). Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 12(1), 46–53. https://doi.org/10.1038/s41561-018-0258-6
- Schulte, E. E., & Hopkins, B. G. (1996). Estimation of organic matter by weight loss-on-ignition. p. 21–31. In: Magdoff, F. R., et al. (eds.) Soil organic matter: Analysis and interpretation. SSSA Special Publication No. 46. SSSA, Madison, WI.
40.Sheidai Karkaj, E., Sepehri, A., Barani, H., & Mo'tamedi, J. (2017). Relationship of soil organic carbon reserve with some soil properties in East Azerbaijan rangelands. Rangeland, 1)1(2), 125–138. https://doi.org/20.1001.1.20080891.1396.11.2.1.0 (In Persian)
41.Tavallaei, S., Harirchi, Sh., Etemadifar, Z., & Taherzadeh, M. (2022). Lignocellulosic biomass: renewable resources for bioethanol production. Biological Journal of Microorganism, 11(43), 71–95. (In Persian).
- Teng, J., Xiang, T., Huang, Z., Wu, J., Jiang, P., Meng, C., Li, Y., & Fuhrmann, J. J. (2015). Spatial distribution and variability of carbon storage in different sympodial bamboo species in China. Journal of Environmental Management, 168, 46–52. https://doi.org/10.1016/j.jenvman.2015.11.034
- Thomas, G. W. (1996). Soil pH and soil acidity. In A. Klute (Ed.), Methods of Soil Analysis. Part 3. Chemical Methods (pp. 475–490). Madison, WI: American Society of Agronomy. https://doi.org/10.22108/bjm.2022.131065.1425
- Weltzin, J. F., Loik, M. E., Schwinning, S., Williams, D. G., Fay, P. A., Haddad, B. M., Harte, J., Huxman, T. E., Knapp, A. K., Lin, G. H., Pockman, W. T., Shaw, M. R., Small, E. E., Smith, S. D., Tissue, D. T., & Zak, J. C. (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53(10), 941-952. https://doi.org/10.1641/0006- 3568(2003)053[0941:ATROTE]2.0.CO;2
- Xie, R., & Wu, X. (2016). Effects of grazing intensity on soil organic carbon of rangelands in Xilin Gol League, Inner Mongolia, China. Journal of Geographical Sciences, 26(11), 1550–1560. https://doi.org/10.1007/s11442-016-1343-7
- Yang, Y., Dou, Y., Wang, B., Wang, Y., Liang, C., An, S., & Kuzyakov, Y. (2022). Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biology and Biochemistry, 170, 108688. https://doi.org/10.1016/j.soilbio.2022.10868847.
47.Yimer, F., Ledin, S., & Abdelkadir, A. (2006). Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma, 1I35(1–2), 335–344. https://doi.org/10.1016/j.geoderma.2006.01.005