Modeling Fire in Arid Rangelands of Northeastern Iran: A Case Study of Namakzar Watershed, Khaf, Iran

Document Type : Original Article

Authors

1 Postgraduate student, Faculty of Agriculture, University of Torbat Heydarieh, Torbat Heydarieh, Iran

2 Assistant Professor, Faculty of Agriculture, University of Torbat Heydarieh, Torbat Heydarieh, Iran

10.22052/JDEE.2024.253933.1097

Abstract

Arid regions’ ecosystems are known as delicate responsive environments, where the effective management and regulation of natural events are essential for maintaining their suitability and promoting sustainable practices. Therefore, this study sought to investigate the extent of fire propagation in the arid rangelands of the Namakzar watershed in terms of topographical (altitude, aspect, slope), climatic (precipitation, temperature), ecological (NDVI), and human factors (distance from the roadway and residential areas) using the geographical information system (GIS) and the Analytic Hierarchy Process (AHP) method. The findings revealed that southwestern and northeastern regions had a great potential for fire occurrences (8%). Moreover, it was found that the middle class (17%) was dispersed in patches, tending to move from the central region towards the eastern and southwestern areas. Moreover, the regions with low or very low-risk status were identified to have made up nearly 75% of the total area of the region. On the other hand, the results of the AHP indicated that temperature (0.20) contributed the most to the fire incidence, followed by aspect (0.17), vegetation (0.17), and distance from residential areas (0.16). Furthermore, the results suggested that modifications in the slope (0.017) and elevation (0.02) of the region exerted negligible influence on the incidence of fire. Therefore, to minimize the chances of the occurrence of such incidents, managers are recommended to employ nearby communities' local knowledge and cooperation in implementing new techniques to control fire incidence in pastures.

Keywords


  1. Abouali, A., Viegas, D.X., & Raposo, J.R, 2021. Analysis of the wind flow and fire spread dynamics over a sloped–ridgeline hill. Combustion and Flame. 234, p.111724.
  2. Aghajanlou, F., Mirdavoudi, H., Shojaee, M., Mac Sweeney, E., Mastinu, A., & Moradi, P., 2021. Rangeland management and ecological adaptation analysis model for Astragalus curvirostris Boiss. Horticulturae, 7(4): p.67.
  3. Akhzari, D., Mohammadi, E., & Saedi, K, 2022. Studying the effect of fire on some vegetation and soil properties in semi-arid shrubland (Case study: Kachaleh Rangelands, Kamyaran Region). Ecopersia, 10(1): 27-35.
  4. Alexandre, P.M., Stewart, S.I., Mockrin, M.H., Keuler, N.S., Syphard, A.D., Bar-Massada, A., Clayton, M.K., & Radeloff, V.C, 2016. The relative impacts of vegetation, topography, and spatial arrangement on building loss to wildfires in case studies of California and Colorado. Landscape ecology, 31: 415-430.
  5. Al-Fugara, A.K., Mabdeh, A.N., Ahmadlou, M., Pourghasemi, H.R., Al-Adamat, R., Pradhan, B., & Al-Shabeeb, A.R, 2021. Wildland fire susceptibility mapping using support vector regression and adaptive neuro-fuzzy inference system-based whale optimization algorithm and simulated annealing. ISPRS International Journal of Geo-Information, 10(6): p.382.
  6. Al-Shabeeb, A.R., Hamdan, I., Meimandi Parizi, S., Al-Fugara, A.K., Odat, S.A., Elkhrachy, I., Hu, T., & Sammen, S.S, 2023. A Comparative Study of Genetic Algorithm-Based Ensemble Models and Knowledge-Based Models for Wildfire Susceptibility Mapping. Sustainability, 15(21): p.15598.
  7. Arroyo, L.A., Pascual, C., & Manzanera, J.A, 2008. Fire models and methods to map fuel types: The role of remote sensing. Forest ecology and management, 256(6): 1239-1252.
  8. Babaeian, I., Rahmatinia, A.E., Entezari, A., Baaghideh, M., Aval, M.B., & Habibi, M, 2021. Future Projection of Drought Vulnerability over Northeast Provinces of Iran during 2021–2100. Atmosphere, 12(12): p.1704.
  9. Ban, Y., Liu, X., Yin, Z., Li, X., Yin, L., & Zheng, W, 2023. Effect of urbanization on aerosol optical depth over Beijing: Land use and surface temperature analysis. Urban Climate, 51: p.101655.
  10. Barbosa, A.S., Pires, M.M., & Schulz, U.H, 2020. Influence of land-use classes on the functional structure of fish communities in southern Brazilian headwater streams. Environmental Management, 65(5): 618-629.
  11. Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., & Grammalidis, N, 2020. A review on early forest fire detection systems using optical remote sensing. Sensors, 20(22): p.6442.
  12. Bentekhici, N., Bellal, S.A., & Zegrar, A, 2020. Contribution of remote sensing and GIS to mapping the fire risk of Mediterranean forest case of the forest massif of Tlemcen (North-West Algeria). Natural Hazards, 104(1): 811-831.
  13. Biermann, F., Bai, X., Bondre, N., Broadgate, W., Chen, C.T.A., Dube, O.P., Erisman, J.W., Glaser, M., Van Der Hel, S., Lemos, M.C., & Seitzinger, S, 2016. Down to earth: contextualizing the Anthropocene. Global Environmental Change, 39: 341-350.
  14. Bradstock, R.A., Hammill, K.A., Collins, L., & Price, O, 2010. Effects of weather, fuel, and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landscape Ecology, 25: 607-619.
  15. Briske, D.D., Archer, S.R., Burchfield, E., Burnidge, W., Derner, J.D., Gosnell, H., Hatfield, J., Kazanski, C.E., Khalil, M., Lark, T.J., & Nagler, P, 2023. Supplying ecosystem services on US rangelands. Nature Sustainability: 1-9.
  16. Chen, M., Wang, K., Dong, X., & Li, H, 2020. Emergency rescue capability evaluation on urban fire stations in China. Process Safety and Environmental Protection, 135: 59-69.
  17. Chinthala, B.D., Singh, A., Shekhar, M., Tomar, N., Phulara, M., Yadav, A., Pandey, P., Ranhotra, P.S., Bhattacharyya, A., Joshi, R., & Singh, C.P, 2023. Age-Girth Stand Structure of Himalayan Fir and Growth-NDVI Relationship in the Treeline Transects of Western Himalaya: An Ecological Perspective. In Ecology of Himalayan Treeline Ecotone: 455-481. Singapore: Springer Nature Singapore.
  18. Costafreda-Aumedes, S., Comas, C., & Vega-Garcia, C, 2017. Human-caused fire occurrence modeling in perspective: A review. International Journal of Wildland Fire, 26(12): 983-998.
  19. Cui, F., 2020. Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environments. Computer Communications, 150: 818-827.
  20. Daşdemir, İ., Aydın, F., & Ertuğrul, M, 2021. Factors affecting the behavior of large forest fires in Turkey. Environmental management, 67: 162-175.
  21. Dias, R., 2023. Ecological resilience in a changing world: Challenges and opportunities in biodiversity conservation in the face of climate change. Seven Editora.
  22. Dietze, E., Brykała, D., Schreuder, L.T., Jażdżewski, K., Blarquez, O., Brauer, A., Dietze, M., Obremska, M., Ott, F., Pieńczewska, A., & Schouten, S, 2019. Human-induced fire regime shifts during 19th-century industrialization: A robust fire regime reconstruction using northern Polish lake sediments. PLoS One, 14(9): p.e0222011.
  23. Efremova, N., Foley, J.C., Unagaev, A., & Karimi, R, 2023. AI for Sustainable Agriculture and Rangeland Monitoring. In The Ethics of Artificial Intelligence for the Sustainable Development Goals: 399-422. Cham: Springer International Publishing.
  24. Eftekharian, E., Ghodrat, M., He, Y., Ong, R.H., Kwok, K.C., Zhao, M., & Samali, B, 2019. Investigation of terrain slope effects on wind enhancement by a line source fire. Case Studies in Thermal Engineering, 14: p.100467.
  25. Esbati, M., Farzadmehr, J., Foroughi, A., Rahdari, M.R., & Rodrigo-Comino, J, 2021. Assessment of the nutritional value of Gundelia tournefortii during its growth stages as a key element in the Senowbar rangeland ecosystem, Northeast of Iran. International Journal of Environmental Science and Technology, 18: 1731-1738.
  26. Eskandari, S., Miesel, J.R., & Pourghasemi, H.R, 2020. The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran. Ecological Indicators, 118: p.106720.
  27. Eskandari, S., Pourghasemi, H.R., & Tiefenbacher, J.P, 2021. Fire-susceptibility mapping in the natural areas of Iran using new and ensemble data-mining models. Environmental Science and Pollution Research, 28(34): 47395-47406.
  28. Gajendiran, K., Kandasamy, S., & Narayanan, M, 2023. Influences of wildfire on the forest ecosystem and climate change: A comprehensive study. Environmental Research: p.117537.
  29. Ghasempour, M., Erfanzadeh, R., & Török, P, 2022. Fire effects on soil seed banks under different woody plant species in Mazandaran province, Iran. Ecological Engineering, 183: p.106762.
  30. Gholami, P., Mirzaei, M.R., Zandi Esfahan, E., & Eftekhari, A, 2020. Effect of Fire on Composition, Biodiversity, and Functional Groups Changes in Semi-Steppe Rangelands of Southern Zagros. Journal of Rangeland Science, 10(1): 39-48.
  31. Gupta, S.K., Kanga, S., Meraj, G., Kumar, P., & Singh, S.K, 2023. Uncovering the hydro-meteorological drivers responsible for forest fires utilizing geospatial techniques. Theoretical and Applied Climatology: 1-21.
  32. Harrison C.G., & Williams P.R. 2016. A systems approach to natural disaster resilience. Simulation Modelling Practice and Theory, 65: 11-31.
  33. He, T., Lamont, B.B., & Pausas, J.G, 2019. Fire as a key driver of Earth's biodiversity. Biological Reviews, 94(6): 1983-2010.
  34. Hinojosa, M.B., Albert-Belda, E., Gomez-Munoz, B., & Moreno, J.M, 2021. High fire frequency reduces soil fertility underneath woody plant canopies of Mediterranean ecosystems. Science of The Total Environment, 752: p.141877.
  35. Humphrey, G.J., Gillson, L., & Ziervogel, G., 2021. How changing fire management policies affect fire seasonality and livelihoods. Ambio, 50: 475-491.
  36. Irvine, D.J., McCluskey, J.A., & Robinson, I.M, 2000. Fire hazards and some common polymers. Polymer Degradation and Stability, 67(3): 383-396.
  37. Jafari, M., Chahouki, M.Z., Tavili, A., Azarnivand, H., & Amiri, G.Z, 2004. Effective environmental factors in the distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran). Journal of Arid Environments, 56(4): 627-641.
  38. Jahdi, R., Salis, M., Alcasena, F.J., Arabi, M., Arca, B., & Duce, P, 2020. Evaluating landscape-scale wildfire exposure in northwestern Iran. Natural Hazards, 101: 911-932.
  39. Jain, P., Castellanos-Acuna, D., Coogan, S.C., Abatzoglou, J.T., & Flannigan, M.D, 2022. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nature Climate Change, 12(1): 63-70.
  40. Javaheri S., & Tarahi A. 2021. Potential assessment hazard of forest fires and rangelands using AHP model (Case study: Kamyaran city). Journal of GIS & RS Application in Planning, 11 (2): 7-19. (In Persian)
  41. Kalogiannidis, S., Chatzitheodoridis, F., Kalfas, D., Patitsa, C., & Papagrigoriou, A, 2023. Socio-psychological, economic and environmental effects of forest fires. Fire, 6(7): p.280.
  42. Karkon Varnosfaderani, M., Kharazmi, R., Nazari Samani, A., Rahdari, M.R., Matinkhah, S.H., & Aslinezhad, N, 2017. Distribution changes of woody plants in Western Iran as monitored by remote sensing and geographical information system: a case study of Zagros Forest. Journal of Forestry Research, 28:145-153.
  43. Kelly, L.T., Giljohann, K.M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A.F., Buckland, S.T., Canelles, Q., Clarke, M.F., & Fortin, M.J, 2020. Fire and biodiversity in the Anthropocene. Science, 370(6519), p.eabb0355.
  44. Khan, A., Gupta, S., & Gupta, S.K, 2020. Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. International journal of disaster risk reduction, 47, p.101642.
  45. Kharazmi, R., Rahdari, M.R., Rodríguez-Seijo, A., & Elhag, M, 2023. Long-Term Time Series Analysis of Land Cover Changes in an Arid Environment Using Landsat Data: (A Case Study of Hamoun Biosphere Reserve, Iran). Desert, 28(1): 123-144.
  46. Korb, J.E., Fornwalt, P.J., & Stevens-Rumann, C.S, 2019. What drives ponderosa pine regeneration following wildfire in the western United States? Forest Ecology and Management, 454, p.117663.
  47. Leal Filho, W., Azeiteiro, U.M., Balogun, A.L., Setti, A.F.F., Mucova, S.A., Ayal, D., Totin, E., Lydia, A.M., Kalaba, F.K., & Oguge, N.O, 2021. The influence of ecosystem services depletion on climate change adaptation efforts in Africa. Science of The Total Environment, 779, p.146414.
  48. Leone, V., Lovreglio, R., Martín, M.P., Martínez, J., & Vilar, L, 2009. Human factors of fire occurrence in the Mediterranean. Earth observation of wildland fires in Mediterranean ecosystems: 149-170.
  49. Li, A.X., Wang, Y., & Yung, Y.L, 2019. Inducing factors and impacts of the October 2017 California wildfires. Earth and Space Science, 6(8): 1480-1488.
  50. Li, W., Buitenwerf, R., Chequín, R.N., Florentín, J.E., Salas, R.M., Mata, J.C., Wang, L., Niu, Z., & Svenning, J.C, 2020. Complex causes and consequences of rangeland greening in South America–multiple interacting natural and anthropogenic drivers and simultaneous ecosystem degradation and recovery trends. Geography and Sustainability, 1(4): 304-316.
  51. Li, Z., Angerer, J.P., & Wu, X.B, 2022. The impacts of wildfires of different burn severities on vegetation structure across the western United States rangelands. Science of the Total Environment, 845, p.157214.
  52. Liu, Y., Zhang, Z., Tong, L., Khalifa, M., Wang, Q., Gang, C., Wang, Z., Li, J., & Sun, Z, 2019. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecological Indicators, 106, p.105504.
  53. Mohammadzadeh-Chenar, H., Farzadmehr, J., Ghorbani, M., Badgery, W.B., Rahdari, M.R., & Rodrigo-Comino, J, 2022. Effect of Collective and Council ownership on social and ecological indicators in wintery rangelands of Iran. International Journal of Environmental Science and Technology, 19(4): 3117-3132.
  54. Morandi, D.T., de Jesus França, L.C., Menezes, E.S., Machado, E.L.M., da Silva, M.D., & Mucida, D.P, 2020. Delimitation of ecological corridors between conservation units in the Brazilian Cerrado using a GIS and AHP approach. Ecological Indicators, 115, p.106440.
  55. Naghipoor Borj, A, 2019. Predicting of fire occurrence using Bayesian belief network in Chaharmahal and Bakhtiari province. Journal of rangeland, 13(1): 90-100. (In Persian)
  56. Nasiri, V., Sadeghi, S.M.M., Bagherabadi, R., Moradi, F., Deljouei, A., & Borz, S.A, 2022. Modeling wildfire risk in western Iran based on the integration of AHP and GIS. Environmental monitoring and assessment, 194(9), p.644.
  57. Neves, J.A., Rangel, A.H.D.N., Neto, M.P., Matos, M.M.S., Silva, R.D.C.D.A., Novaes, L.P., Urbano, S.A., & Paulino, H.M, 2022. Using the Analytic Hierarchy Process method to develop two efficiency indicators for the Food Acquisition Program–Milk modality. Journal of Multi‐Criteria Decision Analysis, 29(5-6): 416-430.
  58. Or, D., Furtak-Cole, E., Berli, M., Shillito, R., Ebrahimian, H., Vahdat-Aboueshagh, H., & McKenna, S.A, 2023. Review of wildfire modeling considering effects on land surfaces. Earth-Science Reviews, 245, p.104569.
  59. Ortiz, D.I., Piche-Ovares, M., Romero-Vega, L.M., Wagman, J., & Troyo, A, 2021. The impact of deforestation, urbanization, and changing land use patterns on the ecology of mosquito and tick-borne diseases in Central America. Insects, 13(1), p.20.
  60. Pausas J.G., & Keeley J.E. 2021. Wildfires and global change. Frontiers in Ecology and the Environment, 19(7): 387-395.
  61. Pivello, V.R., Vieira, I., Christianini, A.V., Ribeiro, D.B., da Silva Menezes, L., Berlinck, C.N., Melo, F.P., Marengo, J.A., Tornquist, C.G., Tomas, W.M., & Overbeck, G.E, 2021. Understanding Brazil’s catastrophic fires: Causes, consequences, and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation, 19(3): 233-255.
  62. Polley, H.W., Emmerich, W., Bradford, J.A., Sims, P.L., Johnson, D.A., Saliendra, N.Z., Svejcar, T., Angell, R., Frank, A.B., Phillips, R.L., & Snyder, K.A, 2010. Physiological and environmental regulation of interannual variability in CO2 exchange on rangelands in the western United States. Global Change Biology, 16(3): 990-1002.
  63. Rahdari M.R., & Rodríguez-Seijo A. 2021. Monitoring sand drift potential and sand dune mobility over the last three decades (Khartouran erg, Sabzevar, NE Iran). Sustainability, 13(16), p.9050.
  64. Rahdari, G.R., Rahdari, M.R., Fakhireh, A.A., Shahryari, A.R., & Khosravi, H, 2013. GIS-based Monitoring and EWSs of Desertification (Case study; southeastern Iran). International Journal of Advanced Biological and Biomedical Research, 1(10): 1185-1198.
  65. Rahdari, M.R., Caballero-Calvo, A., Kharazmi, R., & Rodrigo-Comino, J, 2023. Evaluating temporal sand drift potential trends in the Sistan region, Southeast Iran. Environmental Science and Pollution Research:1-18.
  66. Rahdari, M.R., Gyasi-Agyei, Y., & Rodrigo-Comino, J, 2021. Sand drift potential impacts within desert railway corridors: a case study of the Sarakhs-Mashhad railway line. Arabian Journal of Geosciences, 14: 1-14.
  67. Raoelison, O.D., Valencia, R., Lee, A., Karim, S., Webster, J.P., Poulin, B.A., & Mohanty, S, 2022. Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs. Environmental Pollution, p.120713.
  68. Romanov, A.A., Tamarovskaya, A.N., Gusev, B.A., Leonenko, E.V., Vasiliev, A.S., & Krikunov, E.E., 2022. Catastrophic PM2. 5 emissions from Siberian Forest fires: Impacting factors analysis. Environmental Pollution, 306, p.119324.
  69. Sahoo S.K., & Goswami S.S. 2023. A comprehensive review of multiple criteria decision-making (MCDM) Methods: advancements, applications, and future directions. Decision Making Advances, 1(1): 25-48.
  70. Scherf, B., Rischkowsky, B., Hoffmann, I., Wieczorek, M., Montironi, A., & Cardellino, R, 2008. Livestock genetic diversity in dry rangelands. In The Future of Drylands: International Scientific Conference on Desertification and Drylands Research Tunis, Tunisia, 19-21 June 2006 (pp. 89-100). Springer Netherlands.
  71. Sharma, S., Talchabhadel, R., Nepal, S., Ghimire, G.R., Rakhal, B., Panthi, J., Adhikari, B.R., Pradhanang, S.M., Maskey, S., & Kumar, S, 2023. Increasing risk of cascading hazards in the central Himalayas. Natural Hazards, 119(2): 1117-1126.
  72. Sharples, J.J, 2009. An overview of mountain meteorological effects relevant to fire behavior and bushfire risk. International Journal of Wildland Fire, 18(7): 737-754.
  73. Shoja, S. 2023. Fire risk zoning in the Namzarkhov watershed, M.Sc Thesis, Agriculture Faulty, University of Torbat Heydarieh, Torbat Heydarieh, Iran.
  74. Smith S.P., & Trenholme D, 2009. Rapid prototyping of a virtual fire drill environment using computer game technology. Fire Safety Journal, 44(4): 559-569.
  75. Taabe, M., Ranjbarfordoei, A., Mousavi, S., & Khosroshahi, M, 2017. Qualitative Study of Vegetation Resilience in Response to Long-Term Precipitation Changes (Case Study: Part of the Namakzar-e Khaf Watershed Basin, South Khorasan Province). Geography and Environmental Sustainability, 7 (1): 49-64. (In Persian)
  76. Tervonen, T., Sepehr, A., & Kadziński, M, 2015. A multi-criteria inference approach for anti-desertification management. Journal of Environmental Management, 162: 9-19.
  77. Thompson, M.P., & Calkin, D.E, 2011. Uncertainty and risk in wildland fire management: a review. Journal of Environmental Management, 92(8): 1895-1909.
  78. Tian, Y., Wu, Z., Li, M., Wang, B., & Zhang, X, 2022. Forest fire spread monitoring and vegetation dynamics detection based on multi-source remote sensing images. Remote Sensing, 14(18), p.4431.
  79. Vadrevu, K.P., Eaturu, A., & Badarinath, K, 2010. Fire risk evaluation using multicriteria analysis—a case study. Environmental monitoring and assessment, 166: 223-239.
  80. Van Ginkel M., & Biradar C. 2021. Drought early warning in agri-food systems. Climate, 9(9), p.134.
  81. Wani, O.A., Sharma, V., Kumar, S.S., Babu, S., Sharma, K.R., Rathore, S.S., Marwaha, S., Ganai, N.A., Dar, S.R., Yeasin, M., & Singh, R, 2023. Climate plays a dominant role over land management in governing soil carbon dynamics in the North Western Himalayas. Journal of Environmental Management, 338, p.117740.
  82. Warren, D.R., Roon, D.A., Swartz, A.G., & Bladon, K.D, 2022. Loss of riparian forests from wildfire led to increased stream temperatures in summer, yet salmonid fish persisted. Ecosphere, 13(9), p.e4233.
  83. Wills, A.J., Liddelow, G., & Tunsell, V, 2020. Wildfire and fire mosaic effects on bird species richness and community composition in south-western Australia. Fire Ecology, 16: 1-15.
  84. Xiong, Q., Luo, X., Liang, P., Xiao, Y., Xiao, Q., Sun, H., Pan, K., Wang, L., Li, L., & Pang, X, 2020. Fire from policy, human interventions, or biophysical factors? Temporal–spatial patterns of forest fire in southwestern China. Forest Ecology and Management, 474, p.118381.
  85. Yin, H., Cao, Y., Marelli, B., Zeng, X., Mason, A.J., & Cao, C, 2021. Soil sensors and plant wearables for smart and precision agriculture. Advanced Materials, 33(20), p.2007764.
  86. Yousefi, B., Gheitury, M., Heshmati, M., & Siahmansour, R., 2022. The effect of fire on the structural and functional characteristics of vegetation (case study: Astragalus spp. habitat of Kabodeh, Kermanshah). Journal of Rangeland Science, (In Press).