1. Alami, M. T., Farzin, S., Ahmadi, M. H. and Aghabalaee, B. (2014). System Dynamics Modeling of Dam and Groundwater for Optimal Water Management (Case study: Golak Dam). Journal of Civil and Environmental Engineering. 44(1):74-87. 2. Amoo, O.T., Nakin, M.D. V., Abayomi, A., Ojoubele, H. o. and Salami, A. W.(2020). System Dynamics Approach for Evaluating Existing and Future Water Allocation Planning Among Confilicting Users. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.4(3):44-51. 3. Asadzadeh, F., Kaki, M., Shakiba, S. and B. Raei, B. (2016). Impact of Drought on Groundwater Quality and 3-Groundwater Level in Qorveh-Chardoli Plain. Iran-Water Resources Research. 12(3):513-561. 4. Barati, Kh., Abedi Koupai, J., Darvishi, E., Azari, A. and Yousefi, A. (2020). Cropping Pattern Optimization Using System Dynamics Approach and Multi-Objective Mathematical Programming. J. Agr. Sci. Tech. 22(5):1397-1412. 5. Wade, P. and Eslamian, S., (2017). Water Issues from a System Dynamics Perspective, Ch. 25 in Handbook of Drought and Water Scarcity, Vol. 2: Environmental Impacts and Analysis of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Taylor and Francis, CRC Press, USA, 461-488 6. Fotookian, M.R., Safari. N. and Zarghami. M. (2017). Using System Dynamics Modeling to Develop the Operation Policy for Yamchi Reservoir (Iran) by Applying Optimum Cropping Pattern. Iran-Water Resources Research.13(3):1-16. 7. Ghaderzadeh, H. and karimi, M. (2019). Impacts of Agricultural Water Quota Policy in Groundwater Resources Management in Qorveh-Dehgolan Plain. Agricultural Economics.12(4):73-89. 8. Ghodoosi, M., Morid, S. and Delavar, M. (2013). Comparison of de trending methods for the temperature and precipitations time series. Journal of Agricultural Meteorology.1(2):32-45. 9. Huanhuan, Q., Amy C. Sun, J. L. and Chunmiao, Z. (2012). System dynamics analysis of water supply and demand in the North China Plain. Water Policy 14:214–231. 10. Kadkhodahosseini. M., Shahomammadi. S., Mirabbasi. R. and Nozari. H. (2018). Evaluation of Different Allocation Scenarios for Choghakhor Dam Reservoir Using System Dynamic M. Iran-Watershed Management Science & Engineering. 11(36):23-32. 11. Naseri. H., Ahmadi. M. and Salavitabar. A. (2011). Modeling the utilization of sustainable water resources of Shahrchai Dam (orumieh) by system dynamics method. Iranian Geological Quarterly. 16:97-108. 12. Ojaghlu. H., Mashahir. M. and Razmjo, m. GH. (2017). Monitoring the exploitation of tributaries on reducing the flow of the Ghezel Ozan River (Study Case: Tarom Basin - Khalkhal). 16th Iranian Hydraulic Conference. Faculty of Engineering, Mohaghegh Ardabili University.1-8. 13. Ormsbee, L. and Elshorbagy, A. (2006) Object-oriented modeling approach to surface water quality management, Environmental Modelling & Software.:21:689-698. 14. Paimozd. Sh., Morid. S., Bagheri. A. and Torabi. S.(2011). Inter State water allocation in common basin, using a system dynamics approach:A case study in the Qezel ozan basin. Ph.D. Thesis. Tarbiat Modares University. 15. Park, S. and Sahle, V. and Jung, S. Y. (2015). A System Dynamics Model for the Simulation of the Management of a Water Supply System. 2nd International Conference on Geological and Civil Engineering. 80(8):3641. 16. Report of Agricultural Jihad of Kurdistan Province. (2017). Ministry of Agricultural. 17. Saysel, A. K., Yaman, B. and Yenigun, O. (2002), Environmental sustainability in an agricultural development project: a system dynamics approach. Journal of Environmental Management,64: 247-260. 18. Senge, P. M. (1992). The Fifth Discipline. Random House, Australia, 7th ed. Edition. 19. Simonovic. S. P. (2002). Global water dynamics: Issues for the 21st century. Water Science and Technology, 45(8):53–64. 20. Simonovic, S. P.and Bender, M. J. (1996). Collaborative planning support system: an approach for determining evaluation criteria, Journal of Hydrology, 177(3):237–251. 21. Smith, P. and Ackere, A.V. (2002). A note on the integration of system dynamics and economic models. Journal of economic and control, 26:1–10. 22. Soltani, M. and Alizadeh, A.(2017.)Integrated water resources management at basin scale (IWMsim) using a system dynamics approach. Journal of Soil and Water Resources Protection. 2:69-90 23. Stave, K. A. (2003). A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. International Journal of Environmental Management, 67:303-313. 24. Sterman, J. D. (1994).Learning in and about complex systems. System Dynamics Review, 10(2-3):291–330. 25. Teimoori, M., Mirdamadi, S. M. and Hosseini, S. J. (2018). Modeling of Climate Change Effects on Groundwater Resources: The Application of Dynamic Systems Approach. International Journal of Agricultural Management and Development, 9: 107-118. 26. Yuan, L., He, W., Degefo., D. M., Whan, Zh., Ramsey, T. S and Wu, x.(2021). A system dynamics simulation model for water conflicts in the Zhanghe River Basin, China.International Journal of Water Resources Development. https://doi.org/10.1080/07900627.2021.1873107 27. Vlachos, D., Georgiadis, P. and Iakovou, E. (2007). A system dynamics model for dynamic capacity planning of remanufacturing in closed-loop supply chains. International Journal of Computers and Operations Research, 34:367-394. 28. Water resources planning report.(2011).Ministry of Energy. Iran Water Resources Studies Company.1:1-336. 29. Water resources balance updating studies.(2011). Iran Water Resources Studies Company.5:1-106. 30. Xi. X. and Poha, K. L. (2013). Using system dynamics for sustainable water resources management in Singapore. Procedia Computer Science 16:157 – 166. 31. Xu, Z. X., Takeuchi, K., Ishidaira, H. and Qhang, X. W. (2002). Sustainability analysis for Yellow River water resources using the system dynamics approach. Water Resources Management. 16(3):239–261. 32. Zarghami, M. and Akbariyeh, S. (2012). System dynamics modeling for complex urban water systems: Application to the city of Tabriz, Iran. Resources, Conservation and Recycling. 60:99-106.