1. Abbasnia, M., Tavousi, T., Khosravi, M. and Toros, H., 2016. Uncertainty analysis of the future changes in maximum daily temperatures over Iran using GIS. Geographical Data (SEPEHR). 25(97), 29-43 P. (In Parsian). 2. Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J. and Srinivasan, R., 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology, 333(2-4), 413-430. 3. Aghashahi, M., Ardestani, M., Nick Sokhan, M.H. and Tahmasebi, B., 2012. Introduction and comparison of LARS-WG and SDSM models for micro-scale parameters of environmental parameters in climate change studies, 6th National Conference and Specialized Exhibition of Environmental Engineering, Tehran, 10 p. (In Parsian) 4. Arora, V.K., Scinocca, J.F., Boer, G.J., Christian, J.R., Denman, K.L., Flato, G.M., Kharin, V.V., Lee W.G. and Merryfield, W.J., 2011. Carbon emission limits required to satisfy future Representative concentration pathways of greenhouse gases. Geophysical Research Letters, 38(5), 1-6. 5. Asakereh, H., 2007. Climate Change. Zanjan University Press, (1), 134 p. (In Parsian) 6. Baede, A.P.M., Ahlonsou, E., Ding, Y., and Schimel, D.S., 2001. The Climate System: An Overview. In: Climate Change 2001: impacts, adaptation and vulnerability. pp. 87-98. Cambridge University Press. The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge and New York, 525-582. 7. Dashtbozorgi, A., Alijani, B., Jafarpour, Z. and Shakiba, A., 2015. Simulation of the extreme temperature indices of Khuzestan province based on RCP scenarios, geography and environmental hazards. 16. 105-123p. (In Persian) 8. Ebrahimpour, M., Ghahreman, N. and Orang, M., 2014. Assessment of climate change impacts on reference evapotranspiration and simulation of daily weather data using SIMETAW, Journal of Irrigation and Drainage Engineering, doi: 10.1061/(ASCE)IR.1943-4774.0000669, 04013012. 9. Fischer, G., Frohberg, K., Parry, M.L. and Rosenzweig, C., 1994. Climate change and world food supply, demand and trade: Who benefits, who loses?, Global Environmental Change, 4(1), 7-23. 10. Folland, C.K., Rayner, N.A., Brown, S.J. Smith, T.M., Shen, S.S.P., Parker, D.E., Macadam, I., Joned, P.D., Jones, R.N., Nicholls, N. and Sexton, D.M.H., 2001. Global temperature changes and its uncertainties since 1861. Geographical Research Letters, 28 (13), 2621-2624. 11. Ghahreman, N., Babayan, A. and Tabataba'i, S.M., 2016. Dynamic Outbound Processing of Climate Models in Estimating Potential Evapotranspiration Changes under Radiation Injection Scenarios (Case Study: Mashhad Plain). Physics of Earth and Space. 42 (3), 687-696. (In Parsian) 12. Hosseini, S.S. and M.R. Nazari, 2015. Vulnerability and Adaptability Evaluation. Third National Report on Climate Change (UNFCCC (. 141p. www.climate-change.ir. (In Parsian) 13. Intergovernmental Panel of Climate Change (IPCC)., (2007) 14. IPCC, Climate change. 2007. Synthesis report. An assessment of the intergov-ernmental panel on climate change (IPCC), 2007: Geneva: IPCC. 15. IPCC, 2007. Climate change 2007a: Synthesis report. An assessment of the intergov-ernmental panel on climate change (IPCC). Geneva: IPCC. 16. IPCC, 2007b. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (eds.), Summary for policy makers, in: Climate Change, 2007. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental. 17. Khan, M.S., Coulibaly, P. and Dibike, Y., 2006. Uncertainty Analysis of Statistical Downscaling Methods. Journal of Hydrology, 319: 357-382. 18. Koukidis, E.N. and Berg, A.A., 2009. Sensitivity of the Statistical DownScaling Model (SDSM) to reanalysis products, Atmosphere-Ocean, 47(1), 1-18. 19. Kult, J., Choi, W. and Choi, J., 2014. Sensitivity of the Snowmelt Runoff Model to snow covered area and temperature inputs. Applied Geography, 55, 30-38. 20. Mann, M.E., Bradley R.S. and Hughes, M.K., 1999. Northern hemisphere temper-atures during the past millennium: inferences, uncertainties, and limitations.Geophysical Research Letters, 26 (6), 759-762. 21. Mirdashtvan, M., Najafinejad, A., Malekian, A., and Sa’doddin, A., 2017. Downscaling the contribution to uncertainty in climate-change assessments: representative concentration pathway (RCP) scenarios for the South Alborz Range, Iran. Royal Meteorological Society, 10.1002/met.1706. 22. Nakicenovic, N., Alcamo, J., Davis, G., De Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T.Y. and Kram, T., 2000. Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Pacific Northwest National Laboratory, Richland, WA (US), Environmental Molecular Sciences Laboratory (US). 23. Phuong, D.N.D., Duong, T.Q., Liem, N.D., Tram, V.N.Q., Cuong, D.K. and Loi, N.K. 2020. Projections of Future Climate Change in the Vu Gia Thu Bon River Basin, Vietnam by Using Statistical DownScaling Model (SDSM). Water, 12(3), 755. 24. Rajabi, A. and Shabanlou, S., 2012. Climate index changes in future by using SDSM in Kermanshah, Iran. Journal of Environmental Research and Development, 7(1), 37-44. 25. Razaghian, H., Shahedi, K. and Behrouz, M., 2018. Evaluation of SIMHYD Rainfall-Runoff Model Efficiency in Climate Change Conditions. Journal of Watershed Management Research, Vol.9, No.17. (In Parsian) 26. Sai Mohammadi, S., Zarafshani, K., Tavakoli, M., Amiri, F. and Mehdizadeh, H., 2018. Prediction impact of Climate Change on the Temperature & Precipitation by General Circulation Model, A strategy for sustainable agriculture: (Case of Kermanshah Township). Journal of Environmental Science and Technology (In Parsian). 27. Sailor, D., Hu, T., Li, X. and Rosen, J., 2000. A neural network approach to local downscaling of GCM output for assessing wind power implications of climate change. Renewable energy Journal, 19: 359-378. 28. Samadi, S.Z. and Masha Bouani, A., 2008. Introduction of Artificial Neural Network and SDSM Methods for Small Scale Statistical Data on Temperature and Rainfall Data. 3rd Iranian Water Resources Management Conference. Tabriz University. 9 p. (In Parsian) 29. Samadi, Z., Mashhbouani, A.R. and Mahdavi, M., 2009. Selection of predictive variable in order to scaling the temperature and rainfall data in Karkheh watershed. 5th National Conference on Watershed Management Sciences and Engineering (Sustainable Management of Natural Disasters), Gorgan University of Agricultural Sciences and Natural Resources. (In Parsian) 30. Shamei, A. and Habibi Nokhandan, M., 2009. Global Warming and Ecological Ecological Consequences. First Edition. Ferdowsi University Press. Mashhad, 216 p. (In Parsian) 31. Stern, N., 2006. Stern review: The economics of climate change. Retrieved on May 27, 2015, from,http://mudancasclimaticas.cptec.inpe.br/~rmclima/pdfs/destaques/sternreview_report_complete.pdf. 32. Tukimat, N.N.A., Syukri, N.A. and Malek, M.A. 2019. Projection the long-term ungauged rainfall using integrated Statistical Downscaling Model and Geographic Information System (SDSM-GIS) model. Heliyon, 5(9), e02456. 33. Wilby, R.L. and Dawson, C.W., 2007. Using SDSM version 4.2 –A decision Support tool from assessment of regional Climate change impacts. User manual. 34. Wilby, R.L. and Dawson, C.W. 2007. SDSM 4.2-A decision support tool for the assessment of regional climate change impacts. User Manual. London, UK. 35. Wilby, R.L., Charles, S.P., Zorita, E., Timbal, B,. Whetton, P. and Mearns, L.O. 2004. Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change, available from the DDC of IPCC TGCIA, 27. 36. Wilks, D.S., and Wilby, R.L., 1999. The Weather Generation Game: A Review of Stochastic Weather Models, Progress in Physical Geography. Vol 23, 1999, P. 329-357. 37. Wilks, D.S., 1992. Adapting Stochastic Weather Generation Algorithms for Climate Change Studies. Climate Change, Vol, 22, P 67-84. 38. Yue, T., Zhao, N., Fan, Z., Li, J., Chen, Ch., Lu, Y., Wang, Ch., Xu, B. and Wilson, J., 2016. CMIP5 downscaling and its uncertainty in China. ELSEVIER. Volume 146, Pages 30-37. 39. Zeynoddin, M., and Bonakdari, H., 2019. Investigating methods in data preparation for stochastic rainfall modeling: A case study for Kermanshah synoptic station rainfall data, Iran. Journal of Applied Research in Water and Wastewater, 6(1), 32-38.