1. Alizadeh, A., 2006. Weather and continent (9th Ed.) Mashhad: Ferdousi Mashhad Universty Pub. 2. Armbrust, D.V. and Bilbro Jr., J.D., 1997. Relating plant canopy characteristics to soil transport capacity by wind. Agronomy Journal, 89 (2): 1. 3. Bagnold, R.A., 1941. The physics of wind blown sand and desert dunes. Methuen, London, 265. 4. Boroughani, M., Pourhashemi, S. and Zarei, M., 2019. Identification of Dust Source Areas and its Characteristics in Eastern Iran. Desert Ecosystem Engineer, 25: 39-52 (in Farsi). 5. Brandle, J.R., Hodges L. and Zhou, X.H. 2004. Windbreaks in North American agricultural systems. Agroforestry System, 61: 65-78. 6. Breshears, D.D., Whicker, J.J., Zou, C.B., Field, J.P. and Allen, C.D., 2009. A conceptual framework for dryland aeolian sediment transport along the grassland–forest continuum: effects of woody plant canopy cover and disturbance. Geomorphology, 105(1): 28–38. 7. Buckley, R., 1987. The effect of sparse vegetation on the transport of dune sand by wind. Nature 325 (6103): 426–428. 8. Burri, K., Gromke, C., Lehning, M. and Graf, F., 2011. Aeolian sediment transport over vegetation canopies: A wind tunnel study with live plants. Aeolian Research. 3: 205-213. 9. Cheng, H., He, W., Liu, C., Zou, X., Kang, L., Chen, T. and Zhang, K., 2019. Transition model for airflow fields from single plants to multiple plants. Agriculture and Forest Meteorology, 266: 29-42. 10. Cleugh, H., 1998. Effects of windbreaks on airflow, microclimates and crop yields. Agroforestry System, 41(1): 55-84. 11. Cornelis, W. and Gabriels, D., 2005. Optimal windbreak design for wind-erosion control. Journal of Arid Environment, 61(2): 315-332. 12. Dong, Z., Gao, S. and Fryrear, D.W., 2001. Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation. Journal of Arid Environment, 49 (3): 485–505. 13. Dong, Z., Liu, X., Wang, X., 2002. Aerodynamic roughness of gravel surfaces. Geomorphology, 43 (1), 17–31. 14. Dong, Z., Lv, P., Zhang, Z., Qian, G., Luo, W., 2012. Aeolian transport in the field: a comparison of the effects of different surface treatments. Journal of Geophysical Research, Atmosphere. 117 (9), 1984–2012. 15. Ebrahimi Khosfi, Z., 2019. Analysis of the effect of wind speed and soil moisture on horizontal visibility variations caused by dust event in arid regions (Study region: southeast of Iran). Desert Ecosystem Engineer, 16: 49-58 (in Farsi). 16. Ekhtesasi, MR., Saremi Naeini, M.A., Jaganbakhshi, F. and Mirnejad, O., 2017. Introduction and Comparison of adsorption and maintenance effect of sediment trap by erosion model of Siphoni Model III. Fourth national conferene of wind erosion and dust storms. Yazd. Iran. (in Farsi). 17. Fang, H., Wu, X., Zou, X. and Yang, X., 2018. An integrated simulation-assessment study for optimizing wind barrier design. Agriculture and Forest Meteorology. 263: 198–206. 18. Finnigan, J., 2000. Turbulence in plant canopies. Annual review of fluid mechanics, 32: 519-571. 19. Gao, H., 2010. Study on the windbreak and barrier sand effect of the low profile afforestation. Doctoral dissertation. Beijing Forestry University. 20. Ghaeminia, A.M. and Hakimzadeh, M.A., 2017. Investigation of abiotic windbreak porosity patterns on change of air flow. Desert Ecosystem Engineer. 16: 49-58 (in Farsi). 21. Ghasemi, A., Shahriari, AR., Fakhireh, A., Jafari, M. and Haderbadi, G., 2009. Effect of pattern and density of live windbreak on the wind speed in the Hussein Abad plain, Sarbisheh. Watershed Management Researches Journal (Pajouhesh & Sazandegi) 89: 16-26 (in Farsi). 22. Gillies, J.A., 2002. Drag coefficient and plant form response to wind speed in three plant species: burning Bush (Euonymus alatus), Colorado Blue Spruce (Picea pungensglauca) and Fountain Grass (Pennisetum setaceum). Journal of Geophysical Research, 107 (D24). 23. Goudie, A. and Middleton, N., 2001. Saharan dust storms: nature and consequences. Earth-Science Reviews, 56: 179-204. 24. Goudie, A.S., 2014. Desert dust and human health disorders. Environment international, 63: 101-113. 25. Hagen, L.J. and Casada, M.E., 2013. Effect of canopy leaf distribution on sand transport and abrasion energy. Aeolian Research. 10: 37 42. 26. Hesp, P.A., Yuxiang Dong, Hong Cheng and Booth, J.L., 2019. Wind flow and sedimentation in artificial vegetation: Field and wind tunnel experiments. Geomorphology, 337: 165–182. 27. Hong, C., Chenchen, L., Xueyong, Z., Huiru, L., Liqiang, K., Bo, L. and Jifeng, L., 2020. Wind erosion rate for vegetated soil cover: A prediction model based on surface shear strength. CATENA, 187: 104398. 28. Kučera, J., Podhrázská, J., Karásek, P. and Papaj, V., 2020. The Effect of Windbreak Parameters on the Wind Erosion Risk Assessment in Agricultural Landscape. Journal of Ecological Engineering, 21(2): 150-156. 29. Lee, S.-J., Park, K.-C. and Park, C.-W., 2002. Wind tunnel observations about the shelter effect of porous fences on the sand particle movements. Atmospheric Environment. 36:1453–1463. 30. Leenders, J.K., Boxel, J.H.v. and Sterk, G., 2007. The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina Faso. Earth Surfaces Process and Landforms, 32(10): 1454-1474. 31. Li, B. and Sherman, D.J., 2015. Aerodynamics and morphodynamics of sand fences: A review. Aeolian Research, 17: 33-48. 32. Middleton, N.J., 2017. Desert dust hazards: a global review. Aeolian Research. 24, 53–63. 33. Miri, A., Ahmadi, H., Ekhtesasi, M.R., Panjehkeh, N., and Ghanbari, A., 2009. Environmental and socio‐economic impacts of dust storms in Sistan region, Iran. International Journal of Environmental Studies. 66: 343-55. 34. Miri, A., Dragovich, D. and Dong, Z., 2017. Vegetation morphologic and aerodynamic characteristics reduce aeolian erosion. Scientific Reports. 7(1): 12831 https://doi.org/12810.11038/s41598-12017-13084-x. 35. Miri, A., Dragovich, D. and Dong, Z., 2019. Wind-borne sand mass flux in vegetated surfaces–Wind tunnel experiments with live plants. Catena, 172: 421-434. 36. Musick, H. and Gillette, D., 1990. Field evaluation of relationships between a vegetation structural parameter and sheltering against wind erosion. Land Degradation and Development. 2 (2): 87–94. 37. Namikas, S.L., 2003. Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach. Sedimentology, 50: 303-326. 38. Rashki, A., Kaskaoutis, D.G., Rautenbach, C.D., Eriksson, P.G., Qiang, M. and Gupta, P., 2012. Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Research, 5: 51-62. 39. Rezaei, A. and Mirmohammadi Meiboudi, A.M., 2005 Statistics and Probability (application in agriculture) (first ed.). Isfahan: Jihad-e- Daneshgahi of Isfahan University of Technology (In Farsi). 40. Shahsavani, A., Naddafi, K., Haghighifard, N.J., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., Arahami, M., Sowlat, M.H., Yarahmadi, M., Saki, H. and Alimohamadi, M., 2012. The evaluation of PM10, PM2. 5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from april through september 2010. Journal of arid environments, 77: 72-83. 41. Torshizi, M.R., Miri, A. and Davidson-Arnott, R., 2020. Sheltering effect of a multiple-row Tamarix windbreak–a field study in Niatak, Iran. Agriculture Forest Meteorology, 287: 107937. 42. Van de Ven, T., Fryrear, D. and Spaan, W., 1989. Vegetation characteristics and soil loss by wind. Journal of Soil and Water Conservation, 44: 347-349. 43. Wolfe, S.A. and Nickling, W.G., 1993. The protective role of sparse vegetation in wind erosion. Progess Physical Geogrsphy, 17(1): 50-68. 44. Wu, X., Zou, X., Zhou, N., Zhang, C. and Shi, S., 2015. 2015. Deceleration efficiencies of shrub windbreaks in a wind tunnel. Aeolian Res. 16, 11-23. 45. Wu, Z., 1987. Aeolian geomorphology. Beijing: Science Press. (in Chinese). 46. Yang, H., Lu, Q., Wu, B., Zhang, J. and Lin, Y., 2006. Vegetation diversity and its application in sandy desert revegetation on Tibetan Plateau. Journal of arid environments, 65(4); 619–631.29