1. Akram, M. and Sotoodehnia, A., 2014. Monitoring plan of interceptor drain in Qazvin. Company Reports, Kamab Pars & Saman Abran, Ministry of Jahad Agricultural. 2. Allbed, A., kumar, L. and Sinha, P., 2014. Mapping and modelling spatial variation in soil salinity in the Al Hasa oasis based one remote sensing indication and regression techniques. Remote Sens 6, 1137-1157. 3. Cruden, B. A., Prabhu, D. and Martinez, R., 2012. Absolute radiation measurement in Venus and mars entry conditions, Journal of Spacecraft and Rockets 49(6), 1069–1079. 4. Dehni, A. and Lounis, M., 2012. Remote sensing techniques for salt affected soil mapping: application to the Oran region of Algeria. Procedia Eng 33, 188-198. 5. Elharti, A., Lhissou, R., Chokmani, K., Ouzemou, J., Hassouna, M., Bachaoui, E. and Ghmari, A., 2016. Spatiotempral monitoring of soil salinization in irrigated Tadla plain (Morrocco) using satellite spectral indices, International journal of applied earth Observation and geoinformation 50, 64-73. 6. Hoa, P.V., Giang, N.V., Binh, N.A., Hai, L.V.H., Pham, T.D., Hasanlou, M. and Tien Bui, D., 2019. Soil Salinity Mapping Using SAR Sentinel-1 Data and Advanced Machine Learning Algorithms: A Case Study at Ben Tre Province of the Mekong River Delta (Vietnam). Remote Sens 11(2), 1-20. 7. Huete, A., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25, 295–309. 8. Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment 83(1–2), 195-213. 9. Kendall, M., 1975. Rank Correlation Methods, Griffin, London. 10. Khaleghi, R., Behmanesh, J. and Azad, N., 2019. Prediction of soil salinity using multivariable regression on the basis of extracted indices from Landsat 8 satellite (Case study: Urmia). Applied Soil Research 7(1), 108-121. 11. Khan, N.M., Rastoskuev, V.V., Sato, Y. and Shiozawa, S., 2005. Assessment of hydro saline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manage 77, 96-109. 12. Mann, H.B., 1945. Nonparametric tests against trend. Econometrical 13, 245-259. 13. Morgan, R.S., El Hady, M.A. and Rahim, I.S., 2018. Soil salinity mapping utilizing sentinel-2 and neural networks. Indian Journal of Agricultural Research 52 (5), 524-529. 14. Pishnamaz Ahmadi, M., Rezaei Moghadam, M. and Feizizadeh, B., 2017. Study indexes and mapping of soil salinity using remote sensing data (Case study: Aji Chay river delta). Journal of RS and GIS for Natural Resources 8(1), 85-96. 15. Rouse, J.r.J., Haas, R.H., Schell, J.A. and Deering, D.W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication. 16. Rumelhart, D.E., Hinton G.E. and Williams R.J., 1986. Learning internal representation by back-propagation errors. In: Rumelhart DE, McClelland JL, the PDP Research Group (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, MA. 17. Schap, M.G., Leij, F.J. and Van Genuchten, M.T., 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Journal of Soil Science Society of America 62, 847–855. 18. Whitney, K., Scudiero, E., El-Askary, H., Skaggs, T.H., Allali, M. and Corwin, D.L., 2018. Validating the use of MODIS time series fore salinity assessment over agricultural soils in California, USA. Ecological indicators 93, 889-898.