1. Abraham, A., 2005. Artificial neural networks, Oklahoma State University, Stillwater, USA. 908 PP. 2. Arabkhedri, M., 2014. An overview of the effective factors on the water erosion in Iran. Journal of Land Management, 2 (1): 23-35. 3. American Society for Testing and Materials (ASTM), 2008. Standard test method for particle-size analysis of soils. In: Annual Book of ASTM Standards. Philadelphia. 4. Besalatpour, A.A., Ayoubi, S.A., Hajabasi, D.A., 2016. Gamma test to select the optimal inputs in modeling soil shear strength using artificial neural network. Journal of Soil and Water Conservation Researches (Agricultural Sciences and Natural Resources). 20 (1): 97-114. 5. Breiman, L., 2001. Application and analysis of random forests and machine learning. Journal of Water Management, 15(1): 5-32. 6. Breiman, L., Friedman J., Olshen R., and Stone, C., 1984. Classification and Regression Trees, Chapman & Hall/CRC Press, Boca Raton, FL. 7. Chan, C., Lewis, B., 2002. A basic primer on data mining, Information Systems Management. Journal information System Management, 19(4): 56-69. 8. Chen, Zh. And Wang, J., 2007. Landslide hazard mapping using logistic regression model in MackenzieValley, Canada. Geomorphology, Vol.42. 9. Demirci, M., Baltaci, A., 2013. Prediction of suspended sediment in river using fuzzy logic and multi linear regression approaches. Neural Computing and Applications, 23 (1): 145-151. 10. Feyznia, S., 2008. Applied sedimentology with emphasis on soil erosion and sediment production. Gorgan University of agricultural sciences and natural resources press, 356 pp. 11. Haddadchi, A., Ryder, D.S., Evrard, O. and Olley, J., 2013. Sediment fingerprinting in fluvial systems: review of tracers, sediment sources and mixing models. International Journal of Sediment Research, 28(4): 560-578. 12. Harma, N., Zakaullah, M.D., Tiwari, H., Kumar, D., 2015. Runoff and sediment yield modeling using ANN, and support vector machines (case study: from Nepal watershed). Ore Geology Reviews, 17(9): 63-89. 13. Han, D. and Kamber, M., 2001. Data Mining: Concepts and Techniques. San Diego Academic Press. 14. Hayatzadeh, m., Chezgi, G., Dastorani, M.T., 2015. Evaluation of sediment rating curve and neural network using a combination of morphological parameters Baghabas area. Journal of Agricultural Sciences and Natural Resources, 19 (70): 101-119. 15. Joudi, A. R. & Sattari, M. T., 2017. Evaluation of the performance of quenel based methods in estimating the suspended rainfall of river (case Study: Sufy Chay, Maragheh). Journal of Research in Natural Geography Vol 38(33): 413-429. 16. Kakaei-Lafdani, E., Moghaddamnia, A., Ahmadi, A. Ebrahimi, C., 2013. Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478(25): 50-62. 17. Kavzoglu, T. and Colkesen. I., 2009. A kernel function analysis for support vector machines for land cover classification. Journal of applied Earth Obzervation and Geoinformation, 11(5):352-359. 18. Kakaei Lafdani, E., Pournemat Roudsari, A., Qaderi, K. and Moghaddam-Nia, A., 2014. Predicting the Volume of Suspended Sediments using GMDH and SVM Models Based on Principal Component Analysis. 9th International River Engineering Conference Shahid Chamran University, Ahwaz, pp: 22-24. 19. Keshavarz-Emami, R., karolouks, A., 2007. Local linear tree algorithm development (LOLIMOT) using a fuzzy validity function and credit for time series prediction. 1st Joint Congress on Fuzzy and Intelligent Systems Ferdowsi University of Mashhad, Iran, 29-31 Aug. 20. Kumar Goyal, M., 2014. Modeling of Sediment Yield prediction Using M5 Model Tree Algorithm and Wavelet Regression Journal of Water Resources Management, 28, 1991-2003. 21. Melesse, A. M., Ahmad, M. E., Mcclain, X., Wang, F. and Lim, Y.H., 2011. Suspended sediment load prediction of river systems: An artificial neural network approach. Journal of Agricultural Water Management, 98(5): 855-866. 22. Milhouse, R.T., 1998. Modeling of instream flow needs: the link between sediment and aquatic habitat Soil Sciences. Yazd University publication, Yazd, Iran, 516 pp. 23. Misra, D., Oommenb, T., Agarwal, A., Mishra, A. and Thompson, M., 2009. Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosystems engineering, 6(2): 527- 535. 24. Naeini, S.T., Montazeri, M., Zamani, M.M. and Soltani, F., 2008. Sensitivity analysis of stimulus function of artificial neural network model in estimating sediment concentration. Proceeding of the 4th National congress of Civil engineering, 17-19 May, Tehran. 25. Oralbona, C., Castellini, B., Caputo, L. and sandini, G., 2010. On-line independent support vector machines pattern Recognition Application. Journal of the International Society for the Prevention and Mitigation of Natural Hazard, 10(6): 127-152. 26. Pinto, U., Maheshwar, B., Shrestha, S. and Morris, C., 2012. Modeling eutrophication and microbial risks in peri-urban river systems using discriminant function analysis, Journal of water research, 46(21): 6476- 6488. 27. Richards, J.A., 2013. Remote Sensing digital image analysis, fifth edition, Springer, 494 pp. 28. Rhoton, F.E., Emmerich, W.E., Nearing, M.A., Mc Chesney, D.S. and Ritchie, J.C., 2011. Sediment source identification in a semiarid Watershed at soil mapping unit scales. Catena, 87: 12-181. 29. Siegel. F.R., 2002, Environmental geochemistry of potentially toxic metals. Springer. Berlin Heidelberg New York, 212 pp. 30. Sattari, M.T., Rezazadehjudi, A., Safdari, F., Ghahramanzadeh, F., 2016. Performance evaluation methods, support vector regression modeling M5 model tree and suspended sediment Ahar Chai River. Journal of Soil and Water Conservation, 6 (1): 109-124. 31. Turnbull, L., Wainwright, J. and Brazier, R. E., 2008. A conceptual framework for understanding semi-arid land degradation: Eco hydrological interaction across multiple-space and time scales. Journal of Ecohydrology, 1(1): 23-34. 32. Ulke, A.G., Tayfur, R., Ozkul, S., 2009. Predicting suspended sediment loads and missing data for Gediz River, Turkey. Journal of Hydrologic Engineering, 14(9): 954-965. 33. Yap, C.A., Esmaeili, A., Tan, S., Omar, H., 2002. Correlations between speciation of Cd, Pb and Zn in sediment and their concentrations in total soft tissue of green- lipped mussel Pernaviridis from the west coast of Peninsular Malaysia. Environment International, 28(1-2): 117-126. 34. Zhu, Y. M., Lu, X. X. and Zhou, Y., 2007. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment. China. Journal of Geomorphology, 84(1): 111-125.