1. Abd El-Kawy, O.R., Rod, J.K., Ismail, H.A. and Suliman, A.S. 2011. Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography, 31(2): 483-494. 2. Ahmed, B. and Ahmed. R. 2012. Modeling urban land cover growth dynamics using multi-temporal satellite images: A case study of Dhaka, Bangladesh. ISPRS Int. J. Geo-Inf., 1: 3-31; doi:10.3390/ijgi1010003. 3. Arkhi, S. and niazi, Y. 2010. Evaluation of different remote sensing methods for monitoring land use change (Case study of Valley of Shahr-Ilam Province). Journal of Rangeland and Desert Researches of Iran, 17 (1): 74-93. 4. Chavez, P.S. 1996. An improved dark – object subtraction technique for atmospheric scattering of multispectral data, remote sensing of Environment, 24: 459 – 479. 5. Chuanga, W.C., Lina, C.Y., Chiena, C.H. and Choub, W.C. 2011. Application of Markov-chain model for vegetation restoration assessment at landslide areas caused by a catastrophic earthquake in Central Taiwan. Ecological Modelling, 222: 835- 845. 6. DeWitta, J.D., Chiricoa, P.G., Bergstresserb, S.E. and Warner, T.A. 2017. Multi-scale 46-year remote sensing change detection of diamond mining and land cover in a conflict and post-conflict setting. Remote Sensing Applications: Society and Environment, 8: 126–139. 7. Duke, J.R., White, J.D., Prochnow, Sh.J., Zygo, L., Allen, P.M. and Muttiah, R.S. 2007. The use of remote sensing and modelling to detect small-dam influences on land-use changes along downstream riparian zones. Journal of Ecohydrology and Hydrobiology, 7 (1): 23-35. 8. Fatemi, S.B. And Rezaei, Y. 2011. The basics of remote sensing. Omid Institute, Azadeh Tehran Publishing center. 268 p. 9. Karami, O. 2017. Monitoring and modeling the decline of Zagros oak forests using satellite images with high spatial resolution. Department of Forestry, Faculty of Natural Resources, University of Agricultural Sciences and Natural Resources, Sari, 126 p. 10. Karami, O., Fallah, A., Shtaeii, Sh. and latifi, H. 2017. Investigating the Possibility of Preparation of Zagros Oak Forests Dehumidification Map Using Worldview-2 Satellite Data (Case Study: Ilam Dam Forest). Journal of Forest and Poplar Researches of Iran, 25 (3): 452-462. 11. Kolehmainen, K. and Ban. Y. 2008. Multi Temporal SPOT images for urban land cover change detection over Stockholm Between 1986 and 2004, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b. 12. Kotsiantis, S.B. 2007. Supervised Machine Learning: A Review of Classification Techniques. Informatica, 31: 249-268. 13. Lee S, Ryu J-H, Lee M-J, Won J-S. 2006. The application of artificial neural networks to landslide susceptibility mapping at Janghung, Korea. Mathematical Geology, 38(2): 199- 220. 14. Lu, D. and Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28 (5): 823–870. 15. Matakan, A.A., Saeidi, Kh., Shakiba, A.R. and Hosseiniasl., A. 2010. Evaluation of Land Cover Changes in Connection with Taleghan Dam Construction Using Remote Sensing Techniques. Journal of Applied Research of Geographic Sciences, 16 (19): 45-64. 16. Mazaheri, M.R., Esfandiari, M., Massihabadi, M.H. and Kamali, A. 2014. Monitoring of Land Use Time Changes Using Remote Sensing Techniques and Geographic Information Systems (Case Study: Jiroft, Kerman Province). Journal of Remote Sensing Applications and GIS in Natural Resources Science, 4 (2): 25-39. 17. Mendoza, M.E., Lopez, E., Geneletti, D., Pérez-Salicrup, D.R. and Salinas, V. 2011, Analyzing land cover and land use change processes at watershed level: A multitemporal study in the Lake Cuitzeo Watershed, Mexico (1975-2003), Applied Geography, 31 (1): 237-250. 18. Pal, M. and Mather, P.M. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86: 554–565. 19. Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J. and Deadman, P. 2003. Malti agent systems for the simulation of land use and land cover change: a Review. Annals of the Association of American eographers, 93(2): 314-337. 20. Philpott, D. 2011. A Guide to Federal Terms and Acronyms. Government Institutes, 196 p. 21. Pullanikkatil, D., Palamuleni, L. and Ruhiiga, T. 2016. Assessment of land use change in Likangala River catchment, Malawi: A remote sensing and DPSIR approach. Applied Geography, 71: 9-23. 22. Quirós, E., Felicísimo Á.M. and Cuartero, A. 2009. Testing Multivariate Adaptive Regression Splines (MARS) as a Method of Land Cover Classification of TERRA-ASTER Satellite Images. Sensors, 9: 9011-9028; doi:10.3390/s91109011. 23. Rafiei, R., Mahini, A. and Khorasani, N. 2011. Determination of land use by comparison method after classification of Landsat and IRS images. Journal of Remote Sensing and GIS in Natural Resources, 1 (3): 62- 53. 24. Rahmani, N., Shahedi, K., Soleimani. K. and Miryaghoobzadeh, M.H. 2012. Investigation of Land use Change in Kasilian Watershed Using Multi-Temporal Images. Journal of Range and Watershed Management, Iranian Journal of Natural Resources65 (1): 35-47. 25. Rakeei, B., Khamechian, M., Abdolmaleki, P. and Giahchi, P. 2006. The application of artificial neural networks to landslide susceptibility mapping (case study: Sefidar-Gale region-Semnan province). Journal of Tehran university sciences, 33 (1): 57-68. 26. Ramankutty, N. and Foley, J.A. 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles, 13(4): 997–1028. 27. Saghafian, B., Farazjoo, H., Sepehri, A. and Najafi Nejad, A. 2006. Effect of land use change on flood plain of Golestan dam. Iran Water Resources Research, 2 (1): 18-28. 28. Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, R., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M. and Wall, D.H. 2000. Global Biodiversity Scenarios for the Year 2100, Science, 287 p: 1770-1774. 29. Sanhouse-Garcia, A.J., Bustos-Terrones, Y., Rangel-Peraza, J.G., Quevedo-Castro, A. and Pacheco, C. 2016. Multi-temporal analysis for land use and land cover changes in an agricultural region using open source tools. Remote Sensing Applications: Society and Environment, http://dx.doi.org/10.1016/j.rsase.2016.11.002. 30. Shataei, Sh. and Abdi, O. 2008. Preparation of land use map in Zagros Mountains using ETM + data (Case study: Sorkh-e-Khoramabad Lorestan Province). Journal of Agricultural Sciences and Natural Resources. 14 (1): 1-10. 31. Shiraishi, T. Motohka, T. Thapa, R.B. Watanabe, M. and Shimada, M. 2014. Comparative assessment of supervised classifiers for land use–land cover classification in a tropical region using time-series palsar mosaic data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (4): 1186-1199. 32. Singh, A. 1989. Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing, 10: 989–1003. 33. Talebi, A. and Niazi, Y. 2011. Investigating the Capability of the Physical-Hydrological Model for Surface Surface Surfacing in the Natural Slopes (Case Study: Ilam Dam Watershed). Quarterly Journal of Range and Watershed Management, 64 (3): 323-337. 34. Tripathi, D.K. and Kumar, M. 2012. Remote Sensing based analysis of land Use/land cover dynamics in Takula Block, Almora district (Uttarakhand). Journal of Human Ecology, 38 (3): 207-212. 35. United national population Revision: World Urbanization Prospects: The 2000 Revision. 36. Van Rompaey, A.J., Govers, G. and Puttemans, C. 2002. Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth surface processes and landforms, 27 (5): 481-494. 37. Wang, F. and Jun Xu, Y. 2010. Comparison of remote sensing change detection techniques for assessing hurricane damage to forests. Environmental Monitoring and Assessment, 162: 311-326. 38. Wu, Q., Li, H.Q., Wang, R.S., Paulussen, J., He, Y., Wang, M., Wang, B.H. and Wang, Z., 2006. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and urban planning, 78 (4): 322-333. 39. Zare, M., Nazari Samani, AA, Khalighi Sigaroodi, S., Bazrfshan, J. and Jori., M.H. 2017. Forecasting of Land Use Land Use Change Process in Kasaliyan Basin Using Automatic Markov Model. Pasture and Watershed Management, Iranian Journal of Natural Resources. 70 (2): 273-283.