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Figure (1): Comparison of the performance of different models in predicting the vegetation index
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Figure (2): Changes in total vegetation cover under the influence of different climate change scenarios from 2021 to 2040
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Figure (3): Changes in total vegetation cover under the influence of different climate change scenarios from 2041 to 2060
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Figure (4): Changes in total vegetation cover under the influence of
different climate change scenarios from 2061 to 2080
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Figure (5): Changes in total vegetation cover under the influence of
different climate change scenarios from 2081 to 2100
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Extended Abstract

Introduction : Dry and semi-arid rangelands are vital ecosystems, encompassing approximately 40-50% of the
Earth's terrestrial surface. These regions provide essential ecological services, such as forage production, soil
conservation, carbon sequestration, and biodiversity maintenance. However, climate change poses a significant threat
to these fragile environments through altered temperature regimes, modified precipitation patterns, and an increased
frequency of extreme weather events. In Iran—particularly in the provinces of Chaharmahal and Bakhtiari and
Isfahan—these challenges are further exacerbated by prevailing overgrazing and unsustainable land management
practices. This study aims to quantitatively evaluate the impacts of different climate change scenarios on vegetation
dynamics within these critical rangeland ecosystems.

Materials and Methods: This study was conducted across three key regions—Marjan, Qomishlu, and Sangsefid—
selected to represent a gradient of ecological conditions based on precipitation and temperature. Field sampling was
carried out during the peak vegetation growth period (mid-May to late June). In each region, seven study sites were
established. Within each site, three 30 m x 30 m plots were delineated, and four 2 m x 2 m quadrats were randomly
placed inside each plot for detailed assessment. VVegetation cover percentage was estimated visually, and annual plant
biomass was harvested, cut 1 cm above the soil surface, and weighed.
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Future climate projections were obtained from the MRI-ESM2-0 model within the CMIP6 database, considering
four Shared Socioeconomic Pathway scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) for the period 2021
2100. From an initial set of 19 bioclimatic variables, mean annual temperature (Biol) and annual precipitation (Bio12)
were selected for modeling after applying Variance Inflation Factor (VIF) analysis to mitigate multicollinearity. Four
distinct modeling techniques were evaluated: Generalized Linear Model (GLM), Generalized Additive Model (GAM),
Support Vector Machine (SVM), and Random Forest (RF). Model performance was quantified using the coefficient of
determination (R?) and the Root Mean Square Error (RMSE).

Results and Discussion: The Random Forest (RF) algorithm demonstrated superior performance in simulating
vegetation parameters compared to other modeling approaches. Spatiotemporal analysis of vegetation dynamics across
the three study regions revealed distinct responses to the projected climate scenarios over four future periods (2021
2040, 20412060, 20612080, 2081-2100).

Marjan Region (Resilient Profile): This region exhibited significant resilience and adaptive capacity. The current
vegetation cover (36.18%) showed consistent increases under most scenarios, particularly under the high-emission
SSP5-8.5 scenario in the 2081-2100 period, reaching 39.04%. This positive trend suggests the Marjan ecosystem
currently operates below its temperature optimum, where moderate warming may enhance physiological processes
and extend the growing season. The region likely benefits from "biodiversity insurance effects," where functional
redundancy within species pools enables compensation and maintains ecosystem stability under climatic stress.

Sangsefid Region (Vulnerable Profile): Identified as the most vulnerable area despite having the highest initial
vegetation cover (46.15%), this region experienced substantial declines across most scenarios. The most pronounced
reduction occurred during the 2041-2060 period under SSP2-4.5, decreasing to 42.37%. This high sensitivity
originates from a strong dependence on snowmelt-derived moisture, making it particularly susceptible to shifts in
precipitation patterns and earlier spring melt. Vegetation loss initiates a destructive feedback loop: reduced cover
diminishes soil organic matter and water retention capacity, which intensifies water stress and leads to further
degradation—a manifestation of the "dryland amplification feedback™ mechanism recognized by the IPCC.

Qomishlu Region (Dynamic/Adaptive Profile): This region displayed complex, non-linear dynamics with
intermediate vulnerability. An initial stable cover (31.07%) gradually transitioned to moderate declines, particularly
under high-emission scenarios in mid-century periods. However, it demonstrated notable ecological resilience, with
partial recovery observed in the final period (reaching 31.29% under SSP5-8.5). This pattern illustrates the concept of
"ecological memory" and potential adaptation, where natural selection may favor genotypes better suited to new
conditions, leading to a gradual shift in community composition.

For resistant regions (e.g., Marjan), a conservative management strategy is recommended, focusing on continuous
monitoring and preventing additional anthropogenic pressures, particularly overgrazing. Managers must avoid
"ecological complacency"—a false sense of security derived from apparent short-term stability that could lead to the
neglect of essential long-term adaptation investments.

For vulnerable regions (e.g., Sangsefid), active, interventionist management is urgently required. Strategies should
prioritize climate-resilient restoration using drought-tolerant native species, implementation of runoff harvesting
systems, and precise, controlled grazing regimes. The overarching goal should be "threshold-based management” to
prevent the ecosystem from crossing irreversible tipping points.

For dynamic regions (e.g., Qomishlu), an adaptive and flexible management framework is essential. This approach
necessitates developing early-warning systems to detect indicators of declining resilience and implementing preventive
measures proactively, before critical thresholds are reached.

At a macro level, integrating these ecological forecasts into national and regional land-use planning is crucial.
Aligning rangeland management strategies with international commitments, such as the UN Decade on Ecosystem
Restoration and the Paris Agreement, can facilitate access to necessary financial mechanisms and technical resources
for large-scale implementation.

General Conclusion: This research demonstrates that climate change will exert diverse and complex impacts on
vegetation cover across dry and semi-arid rangelands. The findings confirm that ecosystem responses are not uniform
but are instead mediated by site-specific ecological characteristics. The Marjan region exhibited patterns of ecological
resistance, with positive adaptation and increased vegetation cover under future scenarios. In contrast, the Sangsefid
region showed high vulnerability, marked by a gradual decline in cover. The Qomishlu region demonstrated ecological
resilience through dynamic, non-linear behavior and partial recovery.

From a management perspective, the study underscores the critical need for region-specific, adaptive strategies.
Conservative management is recommended for resistant areas, focused on monitoring and preventing additional
stressors. For vulnerable areas, active and interventionist management is imperative to mitigate degradation and avoid
tipping points. For dynamic areas, flexible and adaptive management is essential to navigate non-linear changes and
support natural resilience processes.
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