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Abstract 

As one of the most important natural hazards worldwide, drought increases the vulnerability of the 

agricultural sector, raises economic loss, and threatens human life, making the characterization of 

drought and its hazard assessment to be of great significance. Therefore, this study used twelve 

various remotely sensed indices derived from Moderate Resolution Imaging Spectroradiometer 

(MODIS) and digital elevation model (DEM) to monitor drought throughout the 2000–2018 

growing season. Moreover, the Standardized Precipitation Index (SPI) was used as reference data, 

with the relevant time scales ranging from 1 to 12 months. Finally, the correlation between thirteen 

indices and SPI in Ilam Province was modulated using three machine learning approaches, 

including random forest, boosted regression trees, and Cubist. The results indicated that among the 

three approaches mentioned above, random forest delivered the best performance (R2 = 0.88) in 

terms of SPI prediction. It was also found that Land Surface Temperature (LST) and 

Evapotranspiration (ET) had higher relative significance in terms of short-term meteorological 

drought, whereas Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation 

Index (SAVI) had higher relative significance in terms of long-term meteorological drought when 

treated by random forest approach. In the next step, relative soil moisture, Standardized 

Precipitation Evapotranspiration Index (SPEI), and crop yield data were used to validate the 

collected data. Finally, the Drought Hazard Index (DHI) was generated based on the probability 

occurrences of drought using the comprehensive drought model made in the previous step. 

Accordingly, the results of the DHI map indicated that 65% and 18% of the study area fell under the 

very high and high classes of drought hazard, respectively. Overall, the results of this study provide 

a comprehensive method for assessing regional drought.  
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1. Introduction 

As one of the most serious natural hazards 

worldwide, drought causes major threats to the 

ecological environment, socioeconomic 

development, and agricultural production (Dai., 

2011), having a variety of types, including 

meteorological, agricultural, hydrologic, and 

socio-economic ones (Wilhite and Glantz., 

1985; Wilhite et al., 2007). From among these 

types of droughts, meteorological drought is of 

greater significance, as it could cause all other 

types of droughts (Nasrollahi et al., 2018).  

Droughts are common natural disasters in 

Iran, bringing about devastating consequences, 

especially in the country’s arid and semi-arid 

provinces. Moreover, drought-induced crop 

failure and water shortages are among the 

frequent problems occurring almost annually in 

Iran (Nasrollahi, 2015). 

Monitoring and predicting drought are 

considered by local, regional, and international 

policymakers as proper strategies to reduce the 

negative influence of drought events, commonly 

implemented via traditional meteorological 

monitoring and remote sensing methods (Dai et 

al., 2011; Wang, 2007). In general, it is 

necessary to use a reliable drought index to 

accurately identify drought events and 

investigate their spatial and temporal changes. 

 While drought indices are used to investigate 

drought, they have mainly been developed 

based on a relevant climate variable. For 

instance, most drought indices depend on 

climatic variables such as precipitation, runoff, 

or soil moisture (Waseem et al., 2015). 

However, applying a multiple-variable-based 

drought index (multiple drought index) could 

help predict drought events more accurately by 

taking a variety of variables into account. 

Moreover, a multiple drought index can usually 

reflect different types of droughts 

(meteorological, hydrological, agricultural, or 

socio-economic droughts). On the other hand, 

single-variable drought indicators are unable to 

reveal the complex relationship existing 

between different variables. Therefore, the 

application of a composite index is suggested as 

a way to overcome the aforementioned problem.  

Combining indices started in the 1990s when 

many composite indices were produced. 

Similarly, drought indices that can effectively 

evaluate and control drought conditions in 

different climatic regions should be developed 

by combining satellite-based drought factors 

and parameters. However, when it comes to 

combining multiple variables, it is important to 

determine what weighting method to use. In this 

regard, equal weighting and linear combination 

approaches are commonly used due to their 

simplicity (Kogan, 1993; Rhee et al., 2010; 

Zhang and Jia, 2013). Nevertheless, considering 

the fact that the factors affecting drought are 

dependent on the region, time, and the type of 

drought, more advanced and consistent 

weighting methods should be explored to 

combine several factors so that drought can 

better be controlled. 

Single-variable-based drought indices are 

unable to provide reliable early warnings on 

complex drought conditions due to their 

potential prediction limitations. For instance, 

SPI is merely based on precipitation, lacking 

any drought information generated by other 

variables or sources such as temperature or soil 

moisture. Therefore, predicting drought based 

on SPI may not provide sufficient information 

to use early preventive measures for operational 

drought management.  

Furthermore, various variables such as 

precipitation, temperature, soil moisture, and 

relative humidity may contribute (or be related) 

to drought conditions through different 

mechanisms, all of which need to be considered 

in monitoring and forecasting drought events. 

Therefore, drought prediction can be improved 

by considering factors such as land surface, 

feedback among variables, and the correlation 

between climate indicators, or certain 

combinations of them (Mishra et al., 2015, 

Wood et al., 2015). 
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The composite index requires developing an 

index based on different drought indices 

(Rajsekhar, 2015) which can represent multiple-

variable drought factors simultaneously. (Huang 

et al., 2015; Chang et al., 2016). In recent years, 

many studies have been conducted to integrate 

various factors to build a multiple-variable 

drought index/model (AghaKouchak et al., 

2015; Park et al., 2016; Yin et al., 2018; Shen et 

al., 2019; Proodhan et al., 2021).  

The traditional regression method is 

commonly used to construct a comprehensive 

model, requiring the determination of weights to 

do so. On the other hand, approaches 

comprising linear combinations with equal 

weighting are generally used because of their 

simplicity (Rhee et al., 2010; Zhang and Jia., 

2013). However, more advanced and adaptive 

weighting approaches should be examined to be 

used for combining multiple factors so that the 

drought could be better monitored (Park et al., 

2016). Seeking to assess drought hazard, this 

study, therefore, used machine learning 

approaches are one of those advanced 

approaches mentioned above. 

Drought hazard assessment can provide 

solutions to mitigate the adverse consequences 

of drought. In this regard, many studies 

conducted recently have considered the 

significance of drought hazards and risks 

(Shahid and Behrawan., 2008; Dabanli., 2018; 

Nasrollahi et al., 2018; Khoshnazar et al., 2021; 

Lin et al., 2021; Sahana et al., 2021). 

According to what was already discussed, it 

could be argued that assessing and monitoring 

drought based on a multiple-variable index 

provides more reliable results than the single-

variable indices do. To develop a multiple-

variable drought index, many indices should be 

selected and modified based on the drought 

type, study area, data availability, and climatic 

regimes. 

 Located in western Iran, Ilam province is 

often suffering from drought due to its arid and 

semi-arid conditions. Moreover, most parts of 

Iran lack a sufficient number of meteorological 

stations to cover a suitable statistical period. 

The problem is more critical in western Iran, 

where intense topography has led to the creation 

of several microclimatic areas with different 

characteristics in terms of soil, vegetation, and 

climatic conditions.  

In addition, most of the studies conducted on 

drought in Ilam province have merely used 

single-factor indices. Considering the fact that 

few studies have considered a comprehensive 

drought index comprising the province’s health 

condition of vegetation, temperature, and 

geographical condition, this study sought to 

evaluate drought in a specific period using 

comprehensive indices made up of different 

variables, attempting to prepare a drought 

hazard map based on the developed index.  

2. Materials and Methods 

2.1. Case study 

Located in the western Zagros Mountain 

between 32° 03    ̍to 34° 02    ̍north latitude and 45° 

40    ̍ to 48° 03   ̍ southwest of Iran (Figure 1), Ilam 

province covers 20106 square kilometers of 

Iran, which is about 1.2% of the country’s total 

area. The mountainous areas in the north and 

northwest of the province are relatively cold 

with long winters, where the minimum 

temperature in winter reaches -15 degrees, and 

the rainfall rate is more than 500mm. The 

western and southwestern regions of the 

province are hot, with their maximum rainfall 

rate being about 200mm. Moreover, while the 

temperature is up to -15 degrees in the middle 

regions of the province, the maximum rate of 

temperature goes up to more than 40 degrees in 

the southern parts during the summer. The 

amount of precipitation in these areas is 

estimated as the average rate of precipitation in 

the two regions mentioned above, varying from 

250 to 400mm (Statistical yearbook of Ilam 

province in 1998). 



 
Z. Heidarizadi, M. Ownegh, Ch. Bairam Komaki / Desert Ecosystem Engineering Journal (2023) 12 (9) 33-48 

 
Figure (1): Geographical location of Ilam Province with rainfall gauging stations  

 

2.2. Data 

2.2.1. Remote sensing data 

This study used 12 drought-based satellite 

indices that were obtained from atmospherically 

corrected MODIS on the Terra platform from 

2000 to 2018. The MOD16A2 ET, the 

MOD11A2 LST, and MOD13A3 NDVI data 

were available with 1 km spatial resolution and 

the MOD09A1 surface reflectance data were 

available with 500 m spatial resolution 

(modis.gsfc.nasa.gov), all of which were used 

for the growing season (March to June). The 

MOD11A2 and the MOD09A1 surface 

reflectance provide 8-day composite data, which 

were converted into monthly data to fit the 

purposes of this study.  

2.2.2. Reference data 

The current study used the SPI as reference data 

to monitor drought. The World Meteorological 

Organization has recommended SPI as a 

standard for describing meteorological droughts 

(McKee, 1993; Dutra et al., 2013). To calculate 

the SPI index, there must be no missing data in 

the time series, and the statistical period should 

be at least 30 years (Svoboda, 2000). In this 

regard, this study used total monthly 

precipitation data collected from 22 stations 

(Table 1, as provided by the Meteorological 

Department of Ilam Province) for the 1988-

2018 period to calculate SPI using DrinC 

software with different time scales (e.g., 1-, 3-, 

6-, 9- and 12-month SPI data) to consider the 

lag time effect between precipitation and 

drought (Park et al., 2016). It should be noted 

that the SPI values were considered as reference 

data. 
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Table (1): Geographical location of the stations whose data were used in this study 
Station Longitude latitude Height above sea level (meters) 

Arkavaz 648794.6689 3696776.245 1423 

Ema 633191.9299 3703942.424 1106 

Ilam 629919.843 3716836.456 1326 

Ivan 621330.2657 3661276.769 1169 

Abdanan 725824.5816 3652032.893 916 

Bishederaz 684077.1853 3634523.828 358 

Pahle 675945.8749 3652862.22 768 

Takhtan 691194.0158 3669787.021 1080 

Chenarbashi 665751.0716 3702597.913 1100 

Chenan 608056.3701 3735048.286 946 

Chaharmele 618609.0572 3755505.731 1338 

Dareshahr 723886.732 3668632.344 630 

Dashteabbas 766452.4025 3590155.067 175 

Dehloran 714081.985 3618486.369 232 

Sarableh 646622.9019 3737411.13 1052 

Salehabad 609959.2904 3703649.821 623 

Karezan 6442047.2325 3733644.817 1262 

Kolm 676798.6435 3691700.984 926 

Gonbad 644391.6254 3680073.544 903 

Lumar 668623.1034 3715588.884 789 

Mormori 751455.3486 3624910.228 524 

Mehran 610441.234 3661147.936 145 

 

2.2.3. Validation data  

Crop yield data: The present study used the total 

crop yield information as the reference data to 

monitor the drought. The data were collected 

from the Jihad Agricultural Organization of 

Ilam province for the 2005-2018 period, 

including the data on wheat and barley.  

Soil moisture data: Several studies previously 

conducted in the same study area have provided 

data concerning the soil relative moisture at a 

depth of 10 cm for the 2000-2018 period. 

Therefore, this study used monthly relative 

moisture data (at the depth of 10 cm) as another 

reference data to validate the drought model. 

Standardized Precipitation apotranspiration 

Index (SPEI): a multivariate index in which 

precipitation and temperature data are 

combined. The 12-month SPEI data (for the 

2000-2018 period) were used to validate the 

constructed model. 

2.3. Methodology  

The Drought Hazard Index (DHI) was 

calculated by combining multi-sensor and 

geographical indices using learning machine 

approaches. Figure 2 illustrates the overall 

framework adopted in this study.  

Remote sensing-based drought factors used 

in this study (Table 2) included Land Surface 

Temperature (LST), Normalized Difference 

Vegetation Index (NDVI), Normalized 

Difference Drought Index (NDDI), Normalized 

Difference Water Index (NDWI), Normalized 

Multi-band Drought Index (NMDI), Soil 

Adjusted Vegetation Index (SAVI), and actual 

ET (collected from MODIS). Moreover, the 

digital elevation map (DEM) was as an auxiliary 

layer. The data collected for each month from 

2000 to 2018 were scaled from 0 to 1 using 

max-min scaling (Kogan, 1993). Then, the 

dataset was divided into two groups: training 

(70%) and validation datasets (30%). Table 2 

shows the remote sensing indices and their 

formula used in this study. 
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Table 2: Remote sensing indices used in this study and their formula 
Reference Formula  Index  

Rouse, 1974 
NIR − RED

NIR + RED
 

NDVI  

Wang and Qu., 2007 (NIR − (SWIR2 − SWIR3))/(NIR + (SWIR2 − SWIR3))  NMDI  

Huet., 1984 G ×
P��� − P���

P��� + C� × P��� − C� × P���� + L
 

EVI  

Huet., 1984 
(NIR − RED)(1 + L)

(NIR + RED+ L)
 

SAVI  

Gao., 1996  

(ρband2 − ρband5(or 6 or 7))/( ρband2 + ρband5 (or 6 or 7) 

 

NDWI5, 6 & 7 

Gu et al., 2007 (NDVI − NDWI)/(NDVI + NDWI) 

 

NDDI5, 6 & 7 

 

 

2.3.1. Drought monitoring and drought 

model construction  

As for the theoretical basis of combining indices 

to monitor drought, it could be argued that a 

multiple-variable drought index includes a 

variety of variables that are not only related to 

precipitation but also to factors that influence 

drought, with each of them representing the 

drought from a different perspective. On the 

other hand, elevation significantly affects 

regional drought.   

To model the drought, this study used a total 

of 13 variables as input variables, all of which 

were derived from previous studies as relevant 

important factors (Park et al., 2016; Shen et al., 

2019). Moreover, the data regarding each month 

(for the 2000-2018 period) were scaled from 0 to 

1 using max-min scaling. Three machine learning 

approaches, including BRT, RF, and Cubist, 

were also used to examine the relationship 

between indices and drought conditions. It 

should be noted that 70% of the samples were 

used randomly as the training data and the 

remaining 30% were used for validation. 

2.3.2. Machine learning approaches 

Random Forest (RF):  a technique for 

developing a regression model between a set of 

inputs and the desired output. The RF model 

also provides the relative significance of each 

variable (Kim et al., 2013; Park et al., 2016) 

through the application of sensitivity analysis 

using the mean decrease accuracy (MDA). In 

this study, the RF model calculations were 

performed in the R4.1.0 software environment 

using the “Random Forest” package (Liaw & 

Wiener., 2002). 

Boosted Regression Tree (BRT): The method 

uses the capabilities of two algorithms, 

including regression trees and an adaptive 

method to combine a large number of simple 

models for delivering an appropriate 

performance (Elith et al., 2008). In the current 

study, the calculations of the RF model were 

performed in the R4.1.0 software environment 

using the “GBM” package.  

Cubist: Aa a commercial rule-based machine, 

Cubist is a software learning tool that draws a 

modified regression tree (Rule Quest, 2012). 

The tool has so far been used for various 

drought studies (Brown et al., 2008). In the 

present study, the calculations of the RF model 

were performed in the R4.1.0 software 

environment using the “model data” package. 

Generally, a total of thirteen factors were used 

as independent variables, and one-month, three-

month, six-month, nine-month, and twelve-

month SPIs were used as dependent variables in 

the machine learning models. Moreover, the 

performance of each machine learning model 

was evaluated using the coefficient of 

determination (R2) and Root-Mean-Square Error 

(RMSE). 
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2.3.3 Drought Hazard Index (DHI)  

Drought hazard is defined as the product of 

drought characteristics, including frequency and 

magnitude. Several studies have fully described 

the procedure for calculating drought events,  

(i.e., Kim et al., 2013; Dabanli., 2018; 

Nasrollahi et al., 2018; Khoshnazar et al., 2021) 

which could briefly be summarized as follows: 

the drought’s vulnerable area is calculated based 

on the percentage of the drought occurrence 

probability using the ratio between occurrence 

in time and the total occurrence.  

In this study, first, the model with the best 

performance was selected, followed by the 

construction of a comprehensive drought index 

(i.e., considering the pixel of remote sensing 

images as a meteorological station) for each 

year and the preparation of the value of the 

blended-drought index. Then, the occurrence 

probability for each pixel and each county was 

obtained, and after that, the frequency of 

drought classes was calculated. Finally, the 

occurrence probability was calculated by 

dividing the frequency of drought occurrence in 

each drought class, considering all possible 

cases of drought. Using a weighting system, the 

drought events are classified into four classes: 

low (L), moderate (M), High (H), and Very 

High (VH) (Table 3).  

As the occurrence of different drought 

severity does not have equal value in 

determining the risk of an area, each drought 

class was weighed to generate the DHI map. 

Weight (W) and rating (R) scores were assigned 

to each category based on severity and 

occurrence probability. The probability of 

occurrence was then classified into four ratings 

using the Jenks’ natural break method 

(Poortaheri et al., 2013; Kim et al., 2013). 

Severity and probability of occurrence are 

weight (Dw) and rating (Dr) for each case 

(Table 3). 

 

 
Table 3: Weights and rates assigned to the drought category 

Drought index value category Weight (DW) Occurrence Probability Rating (Dr) 

0.75-1 Very High (VH) 4 Very high  

High 

Low  

Very low 

4 

3 

2 

1 

0.50-0.75 High (H) 3 Very high  

High 

Low  

Very low 

4 

3 

2 

1 

0.25-0.50 Moderate (M) 2 Very high  

High 

Low  

Very low 

4 

3 

2 

1 

0-0.25 Low (L) 1 Very high  

High 

Low  

Very low 

4 

3 

2 

1 

 

Finally, DHI was calculated through equation 1 as follows: 

DHI = LDr × LDw + MDr × MDw + HDr × HDw + VHDr × VHDw                                (Eq. 1) 

Where LDr, MDr, HDr, and VHDr stand for 

the low, moderate, high, and very high rates 

assigned to the drought category respectively. 

On the other hand, LDw, MDw, HDw, and 

VHDw represent the weights designated for the 

low, moderate, high, and very high drought 

category, respectively. Moreover, the DHI 

values were normalized through the min-max 

normalization approach, converting all values to 

rates ranging from 0 to 1. 
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Figure (2): The Schema of the methodology used for calculating the Drought Hazard Index (DHI) 

 

3. Results  

Remote sensing data: 

 As mentioned earlier, twelve satellite indicators 

were introduced to run the models. Figure 3 

shows the indices used for 2018 as an example. 

here only the map of 2018 is given as an 

example. 

 
Figure (3): The indices used in drought modeling in 2018 

 

3.1. Monitoring the meteorological drought 

and constructing its model:  

BRT Model 

Table 4 shows the results of BRT performance. 

Accordingly, the value of R2 is generally higher 

for SPIs within a longer period, with BRT 

predicting the 6-month SPI with good accuracy. 

However, the model does not deliver a 

relatively good performance for SPIs during 

different periods. The R2 for BRT was found to 

vary between 0.3 and 0.6. 

 

SPI
SPI

Remote sensing data

MOD16A2 MOD13A3 MOD11A2

MOD09A1 DEM

Meteorological data

Temperature Precipitation

NDVI LST ET NDDI5,6,7

NDWI5,6,7 EVI SAVI NMDI

Independent 

variable

Dependent variable

Calculate 13 factors and scale 0 to 1

Model validation and analysis

SPEI Relative soil moisture Crop yield data

Comprehensive Drought Index

SPI

Machine learning models
-Random forest

-Boosted regression trees
-Cubist

Relative importance of variables

Drought hazard map
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Table (4): Performance of BRT model for SPIs of one, 

three, six, nine, and twelve months 

Index RSME MAE R2 

SPI1 0.19 0.11 0.36 

SPI3 0.12 0.14 0.54 

SPI6 0.21 0.10 0.60 

SPI9 0.16 0.15 0.59 

SPI12 0.28 0.11 0.57 
 

The Cubist Model 

Table 5 shows the results of cubist performance. 

Accordingly, the highest R2 value belonged to 

the one-month SPI. However, the results 

obtained from the evaluation of the Cubist 

model revealed that contrary to expectations, the 

model does not deliver a good performance in 

terms of modeling, with the model’s R2 values 

varying from 0.3 to 0.5. 
Table (5): Performance of BRT model for SPIs of one, 

three, six, nine, and twelve months 
Index RSME MAE R2 

SPI1 0.17 0.13 0.31 

SPI3 0.15 0.11 0.44 

SPI6 0.18 0.12 0.48 

SPI9 0.17 0.15 0.52 

SPI12 0.19 0.14 0.50 
 

RF model: 

Figure 4 shows the results of the RF model. 

Accordingly, the random forest model indicated 

acceptable accuracy in simulating the SPI at 

different time scales except for the 1-month SPI, 

clearly underestimating SPI-1 values.  

 

 

 
Figure (4): Scatter plots found for the estimated SPIs at periods of one, three, six, nine, and twelve months using the 

RF model 
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Table 6 shows the results of RF performance, 

according to which, the highest R2 value 

belonged to the 6-month SPI (0.88). Generally, 

it could be argued that R2 values were higher for 

SPIs with a longer period. 
Table (6): Performance of random forest model for 1-, 

3-, 6-, 9-, and 12-month SPIs 

Index RSME MAE R2 

SPI1 0.29 0.11 0.66 

SPI3 0.32 0.09 0.74 

SPI6 0.41 0.009 0.88 

SPI9 0.36 0.01 0.79 

SPI12 0.38 0.08 0.83 

As shown in Table 6, from among different 

SPIs, the 6-month SPI delivered the best 

performance, followed by the 12-month one. In 

general, it could be said that the model delivered 

a good performance for SPIs at different 

periods. For instance, the range of the predicted 

6-month SPI obtained according to the RF is 

similar to the range of the actual 6-month SPI. 

These results are related to the accuracy of the 

model in the training phase.  

3.1.2. Determining the relative importance of 

the drought-based factors 

As the RF model showed the best 

performance in modeling the drought (out of 

three machine learning models investigated in 

this study), it was selected for this purpose. 

Table 7 shows the most appropriate 

environmental variables for modeling derived 

from the analysis of the variance inflation 

factor. Accordingly, six variables were selected 

as the most optimal parameters (out of thirteen 

variables), whose relative importance was 

identified using the data collected from a 

nineteen-year period (2000–2018). 

Table (7): The Relative importance of the most significant indices found for 1-, 3-, 6-, 9-, and 12-month SPIs 

using the RF Model 
Rank SPI 1 SPI 3 SPI 6 SPI 9 SPI 12 

1 ET(100) SAVI (100) NDWI7 (96) NDWI6 (98) NDWI6 (88) 

2 LST (96) NDWI6 (.98) NDVI (95.2) NDVI (88) NMDI (81) 

3 DEM (61) NDVI (93) NDWI6 (87.4) DEM (77) NDVI (76) 

4 NDWI7 (43.2) NDDI6 (91) SAVI (86.2) ET (66) DEM (68) 

5 NDVI (11.2) EVI (74) ET (72.7) NMDI (69) ET (65) 

6 NDDI6 (3.5) DEM (63) DEM (64) NDDI6 (12) SAVI (11) 

 

According to the results presented in Table 7, 

the importance of surface conditions-related 

indices such as surface temperature and 

evapotranspiration is greater in short drought 

periods than in long ones. Moreover, drought 

occurrence and the lack of precipitation are 

instantaneously connected to the elevation of 

the study area. The SAVI is also more important 

in short drought periods.  

 

3.1.3. Analysis of the model’s monitoring results 

According to Table 8, the correlation between 

constructed model and the SPEI was found to be 

0.88. Furthermore, the correlation between the 

crop yield data and the constructed model was 

reported as 0.68. In general, the results of 

correlation analysis revealed that the highest 

correlation existed between the constructed 

model and the reference data. 

 

Table (8): Correlation between the constructed model and the reference data 

Soil moisture  Crop yield SPEI SPI Constructed model  Index  

        1  Constructed model  

     1  0.85  SPI  

    1  0.78  0.88  SPEI  

  1  0.69  0.64  0.77  Crop yield  

1  0.72  0.59  0.52  0.68  Soil moisture  
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3.2. Mapping drought hazard 

The DHI indicates the drought hazard. On the 

other hand, the Ilam province could be 

classified into four classes based on the DHI, 

whose map shows more drought severity in the 

south and southwest counties of the province 

than other parts of the province, considering the 

fact that these parts possess lower altitudes and 

this feature makes these Counties warmer. 

According to Table 9, 65% of the study area 

falls within the very high class of drought 

hazard (Figure 5). 

 
Figure 5: DHI map of Ilam province 

 
Table (9): Area related to drought hazard classes 

classes Area Percent (%) 

Moderate 3238/46 16/09 

High 3665/61 18/23 

Very High 13202/3 65/66 

 

4. Discussion   

Considering the fact that drought is regarded as 

a very complex phenomenon, it is necessary to 

use a reliable drought index to accurately 

identify drought events and investigate their 

spatial and temporal changes. On the other 

hand, as several drought indices have so far 

been proposed, a suitable model needs to be 

developed by selecting and integrating 

important and highly influential variables in a 

specific region.  

Located in western Iran, Ilam province 

usually suffers from drought due to its dry and 

semi-arid climate. Therefore, this study sought 

to evaluate and monitor drought in the province 

during a certain period (by considering various 

variables), trying to develop a drought hazard 

map. To do so, twelve satellite-extracted 

drought indices and one environmental indicator 

(which were introduced as efficiency indicators 

according to previous studies), were used and 

analyzed using machine learning approaches.  

Moreover, BRT, RF, and Cubist approaches 

were used to simulate the SPI and determine the 

relative weight and importance of the indices. 

The results indicated that the BRT model 

achieved a higher efficiency than the Cubist 

one, whose efficiency proved to be the lowest 
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among the three approaches mentioned above.  

The acceptable performance of the RF model 

could partly be attributed to the self-evaluation 

and self-correction capability of the model 

during the construction of multiple trees 

(Kouranjadi and Porqashmi, 2018). Therefore, 

the present study used the random forest model 

as the most appropriate and efficient method for 

the study area. In this regard, the weight and 

relative importance of each index were 

determined using RF, followed by the removal 

of less important indices from the model to 

acquire six final indices. 

 The results of the model validation 

suggested that the correlation between the 

constructed model, soil moisture, and crop yield 

was higher than other variables. In other words, 

the constructed model for drought showed more 

realistic conditions of the drought occurrence in 

the region, which were consistent with the 

results found by Shen et al (2019). Moreover, 

the results are in agreement with the findings 

reported by Mizzell (2008), Wardlow et al. 

(2012), Park et al. (2016), Luetkemeier et al. 

(2017) and Sahana et al. (2021) who argued that 

the combination of indices achieved a higher 

efficiency in evaluating and monitoring drought 

than single indices. 

The results also indicated that the LST and 

ET indices were more significant in shorter 

periods of drought, which was consistent with 

the findings of Zhang & Jia (2013). On the other 

hand, vegetation-related variables such as 

NDWI gained more significance with an 

increase in the drought period, which was 

consistent with the results reported by Gessner 

et al. (2013), Piao et al. (2003), and Park et al. 

(2016). Furthermore, Farrokhzadeh et al (2017) 

argued that remote sensing data, NDVI, and 

EVI can be used in areas with insufficient rain 

gauge data where meteorological stations are 

inappropriately distributed to be resorted to for 

monitoring drought. The SAVI and NDVI were 

also found to be of great significance for 

monitoring drought in Ilam Province, which was 

consistent with the results of a study carried out 

by Faramarzi et al (2018) in the province. 

Moreover, assessing the drought hazard 

throughout the study’s statistical period (2000-

2018) revealed that Ilam was exposed to 

moderate to very high drought hazard risks and 

that there was a very high drought hazard risk in 

some of the province’s cities, including Mehran, 

Dehlran, Dehrashahr, and Badreh. Also, it was 

found that 65% of the study area fell in a very 

high class of drought hazard risk, which could 

be considered as a threat to the region. 

5. Conclusions 

This study used machine learning approaches to 

construct a multivariate drought index using 

remote sensing data and geographical 

information. Considering the limited and 

insufficient number of meteorological stations 

in Iran, especially in Ilam province, and their 

inappropriate distribution in the region, the 

model proposed in the current study could be 

considered as a novel and effective method for 

monitoring regional drought. In this regard, the 

study found that satellite imagery with high 

accuracy can play a very important role in 

monitoring, evaluating, and modeling drought.  

In this study, the pixel size of satellite images 

was used as a meteorological station that can 

significantly increase the accuracy of drought 

assessment since the number of meteorological 

stations in the province is limited due to its 

specific geographical conditions. While this 

study used machine learning methods, other 

data mining methods such as deep learning, 

support vector models, and other efficient tools 

in the field of drought monitoring should be 

used to prove the constructed model. 

 

References

1. AghaKouchak, A., Farahmand, A., Melton, F.S., Teixeira, J., Anderson, M.C., Wardlow, 



 
Z. Heidarizadi, M. Ownegh, Ch. Bairam Komaki / Desert Ecosystem Engineering Journal (2023) 12 (9) 33-48 

45 

B.D. and Hain, C.R., 2015. Remote sensing 

of drought: progress, challenges and 

opportunities, Journal of Reviews of 

Geophysics. 53, 452–480. 

2. Brown, J.F., Wardlow, B.D., Tadesse, T., 

Hayes, M.J. and Reed, B.C. 2008. The 

Vegetation Drought Response Index 

(VegDRI): a new integrated approach for 

monitoring drought stress in vegetation. 

GIScience Remote Sens. 45 (1), 16–46. 

3. Chang, J., Li, Y., Wang, Y., Yuan, M., 2016. 

Copula-based drought risk assessment 

combined with an integrated index in the 

Wei River Basin. China J. Hydrol. 540, 824–

834. 

4. Chang, J., Li, Y., Wang, Y. and Yuan, M., 

2016. Copula-based drought risk assessment 

combined with an integrated index in the 

Wei River Basin. China J. Hydrol. 540, 824–

834. 

5. Dabanli, I, 2018. Drought Risk Assessment 

by Using Drought Hazard and Vulnerability 

Indexes, Natural Hazards and Earth System. 

Sciences Discuss. 1–15.  

6. Dai, A, 2011. Erratum: drought under global 

warming: a review, Wiley Interdisciplinary 

Reviews: Climate Change, 2 (1), 45–65. 

7. Dutra, E., Giuseppe, F. D., Wetterhall, F. 

and Pappenberger, F, 2013. Seasonal 

forecasts of droughts in African basins using 

the Standardized Precipitation Index, 

Hydrology and Earth System Sciences, 

17(6), 2359-2373. doi:10.5194/hess-17-

2359-2013. 

8. Elith, J., Leathwick, J. R., & Hastie, T. 

(2008). A working guide to boosted 

regression trees. Journal of animal ecology, 

77(4), 802-813. doi: 10.1111/j.1365-

2656.2008.01390.x 

9. Faramarzi M, Heidarizadi Z, Mohamadi A, 

Heydari M. Detection of Vegetation 

Changes in Relation to Normalized 

Difference Vegetation Index (NDVI) in 

Semi-Arid Rangeland in Western Iran. 

JAST. 20 (1) :51-60. 

10. Farrokhzadeh, B, Mansouri, Sh, and 

Sepehari, A, 2016, determination of the 

correlation between vegetation indices 

NDVI and EVI with meteorological drought 

index SPI (case study: plain pastures of 

Golestan province), Agricultural 

Meteorology Journal, Volume 5, No. 2, pp. 

65-56. 

11. Gao, B.-C, 1996. NDWI—a normalized 

difference water index for remote sensing of 

vegetation liquid water from space, Remote 

Sensing Environment (RSE). 58 (3), 257–

266. 

12. Gessner, U., Naeimi, V., Klein, I., Kuenzer, 

C., Klein, D., and Dech, S. (2013). The 

relationship between precipitation anomalies 

and satellite-derived vegetation activity in 

Central Asia. Global and Planetary Change, 

110, 74-87. 

https://doi.org/10.1016/j.gloplacha.2012.09.

007. 

13. Gu, Y., Brown, J.F., Verdin, J.P. and 

Wardlow, B, 2007. A five-year analysis of 

MODIS NDVI and NDWI for grassland 

drought assessment over the central Great 

Plains of the United States, Geophysical 

Research Letters, 34 (6). 

14. Huang, S., Chang, J., Leng, G., Huang, Q., 

2015. Integrated index for drought 

assessment based on variable fuzzy set 

theory: a case study in the Yellow River 

basin. China. J. Hydrol. 527, 608–618.  

15. Huete, A. R., Post, D. F., and Jackson, R. D, 

1984. Soil Spectral effects and 4-space 

vegetation discrimination, Journal of 

Remote sensing of Environment, 15:155-

165. 

16. Khoshnazar, A., Corzo Perez, G.A., and 

Diaz, V, 2021. Spatiotemporal Drought Risk 

Assessment Considering Resilience and 

Heterogeneous Vulnerability Factors: 



 
Z. Heidarizadi, M. Ownegh, Ch. Bairam Komaki / Desert Ecosystem Engineering Journal (2023) 12 (9) 33-48 

Lempa Transboundary River Basin in The 

Central American Dry Corridor, Journal of 

Marine Science and Engineering, 9(4):386. 

https://doi.org/10.3390/jmse9040386 

17. Kim H, Park J, Yoo J, Kim TW, 2013, 

Assessment of drought hazard, vulnerability, 

and risk: a case study for administrative 

districts in South Korea. J Hydro Environ 

Res 9(1):28–35 

doi:https://digitalcommons.unl.edu/droughtn

etnews/80 

18. Kogan, F.N. 1993.United States droughts of 

late 1980's as seen by NOAA polar orbiting 

satellites. International Geoscience and 

Remote Sensing Symposium, 1:197-199 

19. Kouranjadi, A, Pourqasmi, H. 2018. 

Landslide susceptibility assessment using 

data mining models, case study: Chelchai 

watershed. Watershed Engineering and 

Management, 11(1), 28-42. 

20. Liaw A, Wiener M, 2002. “Classification 

and Regression by randomForest.” R News, 

2(3), 18-22. https://CRAN.R-

project.org/doc/Rnews/. 

21. Lin, Y.-C.; Kuo, E.-D.; Chi, W.-J. Analysis 

of Meteorological Drought Resilience and 

Risk Assessment of Groundwater Using 

Signal Analysis Method. Water Resour. 

Manag. 2021, 35, 179–197. [CrossRef] 

22. Luetkemeier, R.; Stein, L.; Drees, L.; Liehr, 

S.2017, Blended Drought Index: Integrated 

Drought Hazard Assessment in the Cuvelai-

Basin. Climate, 5, 51. 

https://doi.org/10.3390/cli5030051 

23. McKee, T. B., Doesken, N. J., & Kleist, J. 

1993,. The relationship of drought frequency 

and duration to time scales. In Proceedings 

of the 8th Conference on Applied 

Climatology (Vol. 17, No. 22, pp. 179-183). 

24. Mishra, A.K., Sivakumar, B., Singh, V.P., 

2015. Drought processes, modeling, and 

mitigation. J. Hydrol. 526, 1–2. 

25. Mizzell, H., 2008. Improving Drought 

Detection in the Carolinas: Evaluation of 

Local, State, and Federal Drought Indicators. 

University of South Carolina. 

26. Nasrollahi, M, 2015. Assessment of drought 

hazard, vulnerability and risk (case study: 

Semnan province). M.Sc. thesis. Faculty of 

Natural Resources, University of Tehran. 

104p 

27. Nasrollahi, M., Khosravi, H., 

Moghaddamnia, A. 2018. Assessment of 

drought risk index using drought hazard and 

vulnerability indices. Arab J Geosci 11, 606 

.https://doi.org/10.1007/s12517-018-3971-y 

28. Park, S., Im, J., Jang, E., & Rhee, J. (2016). 

Drought assessment and monitoring through 

blending of multi-sensor indices using 

machine learning approaches for different 

climate regions. Agricultural and forest 

meteorology, 216, 157-169. 

Doi:https://doi.org/10.1016/j.agrformet.2015

.10.011. 

29. Piao, S., Fang, J., Zhou, L., Guo, Q., 

Henderson, M., Ji, W. 2003. Interannual 

variations of monthly and seasonal 

normalized difference vegetation index 

(NDVI) in China from 1982 to 1999. Journal 

of Geophysical Research: Atmospheres, 

108(D14). 

Doi:https://doi.org/10.1029/2002JD002848 

30. Poortaheri M, Eftekhari A, Kazemi N, 2013. 

The role of drought risk management 

approach in reducing social—economic 

vulnerability of farmers and rural regions 

case study: Sulduz Rural District, Azerbaijan 

Gharbi. Rural Res 4(1):1–12 

31. Proodhan, Foyez A., Jiahua Zhang, Fengmei 

Yao, Lamei Shi, Til P. Pangali Sharma, Da 

Zhang, Dan Cao, Minxuan Zheng, Naveed 

Ahmed, and Hasiba P. Mohana. 2021. "Deep 

Learning for Monitoring Agricultural 

Drought in South Asia Using Remote 

Sensing Data" Remote Sensing 13, no. 9: 

1715. https://doi.org/10.3390/rs13091715. 



 
Z. Heidarizadi, M. Ownegh, Ch. Bairam Komaki / Desert Ecosystem Engineering Journal (2023) 12 (9) 33-48 

47 

32. R Core Team, 2021. R: A language and 

environment for statistical computing. R 

Foundation for Statistical Computing, 

Vienna, Austria.URL https://www.R-

project.org/. 

33. Rajsekhar, D., V. P. Singh, and A. K. 

Mishra, 2015, Integrated drought causality, 

hazard, and vulnerability assessment 20 for 

future socioeconomic scenarios: An 

information theory perspective. J. Geophys. 

Res. Atmos., 120, 6346–6378. 

http://doi.org/10.1002/2014JD022670 . 

34. Rhee, J., Im, J., Carbone, G.J., 2010. 

Monitoring agricultural drought for arid and 

humid regions using multi-sensor remote 

sensing data. Remote Sens. Environ. 114 

(12), 2875–2887. 

35. Rouse, J.W., 1974. Monitoring the vernal 

advancement of retro gradation of natural 

vegetation. NASA/GSFC, Type III, Final 

Report, Greenbelt, MD, pp. 371. 

36. RuleQuest, 2012. 

http://www.rulequest.com/. 

37. Sahana, V, Mondal, A, Sreekumar, P. 2021, 

Drought vulnerability and risk assessment in 

India: Sensitivity analysis and comparison of 

aggregation techniques, Journal of 

Environmental Management, 299(113689), 

pages 1-10. 

https://doi.org/10.1016/j.jenvman.2021.1136

89 

38. Shahid, S., Behrawan, H., 2008. Drought 

risk assessment in the western part of 

Bangladesh. Nat. Hazards 46, 391e413. 

39. Shen, R, Huang, A, Li, B, Guo, J., 2019, 

Construction of a drought monitoring model 

using deep learning based on multi-source 

remote sensing data,International Journal of 

Applied Earth Observation and 

Geoinformation,Volume 79,2019,Pages 48-

57, 

40. Svoboda, M., 2000. An introduction to the 

drought monitor. Drought Network 

News(1994-2001).80.  

41. United Nation Development Program (2004) 

Reducing disaster risk, A challenge for 

development. United Nation Development 

Program/ Bureau for Crisis Prevention and 

Recovery, New York. http://www. 

undp.org/bcpr/disred/rdr.htm. 

42. Wang, L., Qu, J.J., 2007. NMDI: A 

normalized multi-band drought index for 

monitoring soil and vegetation moisture with 

satellite remote sensing. Geophys. Res. Lett. 

34 (20). 

43. Wardlow, B. D., Anderson, M. C., & 

Verdin, J. P. (Eds.). (2012). Remote sensing 

of drought: Innovative monitoring 

approaches. CRC Press 

44. Waseem, M., Ajmal, M., & Kim, T. W. 

2015. Development of a new composite 

drought index for multivariate drought 

assessment. Journal of Hydrology, 527, 30-

37. 

Doi:https://doi.org/10.1016/j.jhydrol.2015.0

4.044. 

45. Wilhite, D.A., Glantz, M.H., 1985. 

Understanding: the drought phenomenon: 

the role of definitions. Water Int. 10 (3), 

111–120.  

46. Wilhite, D.A., Svoboda, M.D., Hayes, M.J., 

2007. Understanding the complex impacts of 

drought: a key to enhancing drought 

mitigation and preparedness. Water Resour. 

Manage. 21 (5), 763–774. 

47. Wood, E. F., S. D. Schubert, A. W. Wood, 

C. D. Peters-Lidard, K. C. Mo, A. Mariotti, 

and R. S. Pulwarty, 2015: Prospects for 

Advancing Drought Understanding, 

Monitoring, and Prediction. J. 

Hydrometeor., 16, 1636–1657. 

48. Yin, J., Zhan, X., Hain, C.R., Liu, J., 

Anderson, M.C., 2018. A method for 

objectively integrating soil moisture satellite 

observations and model simulations toward 

a blended drought index. Water Resour. Res. 



 
Z. Heidarizadi, M. Ownegh, Ch. Bairam Komaki / Desert Ecosystem Engineering Journal (2023) 12 (9) 33-48 

54. https://doi.org/10.1029/ 2017WR021959. 

49. Zhang, A., Jia, G., 2013. Monitoring 

meteorological drought in semiarid regions 

using multi-sensor microwave remote 

sensing data. Remote Sens. Environ. 134, 

12–23. 

Doi:https://doi.org/10.1016/j.rse.2013.02.02

3

 


